skip to main content

Investigating the Interaction between Methanol and the Heulandite-type Zeolite using First Principle Molecular Dynamic

Department of Chemistry, Universitas Gadjah Mada, Sekip Utara BLS 21, Yogyakarta, Indonesia

Received: 14 Jul 2022; Revised: 26 Aug 2022; Accepted: 26 Aug 2022; Available online: 30 Aug 2022; Published: 30 Sep 2022.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2022 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image
Abstract

The interaction between methanol and the Heulandite-type zeolite has been unveiled to give an atomic scale detail regarding the catalytic activity of this zeolite for methanol conversion. The study was carried out by first principle molecular dynamics to get an insight into the structure and electronic behaviour of methanol inside the zeolite structure at different temperatures. The behaviour of methanol was studied when the location of the proton of Bronsted acid sites was varied to give both possible direct and less interaction with methanol. The results show that methanol interacts with the proton from zeolite to give a cationic species of [CH3OH2]+ both in 300K and 573K conditions. However, when the proton is located at different location far from possible interaction with methanol, the formation of a cationic species is hindered. This study provides an insight into the design of Heulandite type zeolite to give a catalytic activity toward methanol transformation.

Fulltext View|Download
Keywords: Zeolite; heulandite; methanol; ab initio molecular dynamic; structure
Funding: Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada

Article Metrics:

  1. Davis, M.E. (2014). Zeolites from a materials chemistry perspective. Chemistry of Materials, 26(1), 239–245. DOI: 10.1021/cm401914u
  2. Larsen, S.C. (2007). Nanocrystalline zeolites and zeolite structures: Synthesis, characterization, and applications. Journal of Physical Chemistry C, 111(50), 18464–18474. DOI: 10.1021/JP074980M
  3. Database of Zeolite Structures. http://www.iza-structure.org/databases/. Accessed 4 Apr 2022
  4. Król, M. (2020). Natural vs. Synthetic zeolites. Crystals, 10(7), 1–8. DOI: 10.3390/cryst10070622
  5. Liang, Y., Jacobson, A.J., Rimer, J.D. (2021). Strontium Ions Function as Both an Accelerant and Structure-Directing Agent of Chabazite Crystallization. ACS Materials Letters, 3(2), 187–192. DOI: 10.1021/acsmaterialslett.0C00460
  6. Lee, H., Shin, J., Hong, S.B. (2021). Tetraethylammonium-Mediated Zeolite Synthesis via a Multiple Inorganic Cation Approach. ACS Materials Letters, 3(4), 308–312. DOI: 10.1021/acsmaterialslett.1C00034
  7. Blay, V., Louis, B., Miravalles, R., Yokoi, T., Peccatiello, K.A., Clough, M., Yilmaz, B. (2017). Engineering zeolites for catalytic cracking to light olefins. ACS Catalysis, 7(10), 6542–6566. DOI: 10.1021/acscatal.7B02011
  8. Shirono, K., Endo, A., Daiguji, H. (2005). Molecular dynamics study of hydrated faujasite-type zeolites. Journal of Physical Chemistry B, 109(8), 3446–3453. DOI: 10.1021/JP047293T
  9. Ahunbay, M.G. (2011). Monte carlo simulation of water adsorption in hydrophobic MFI zeolites with hydrophilic sites. Langmuir, 27(8), 4986–4993. DOI: 10.1021/LA200685C
  10. Zhou, T., Bai, P., Siepmann, J.I., Clark, A.E. (2017). Deconstructing the Confinement Effect upon the Organization and Dynamics of Water in Hydrophobic Nanoporous Materials: Lessons Learned from Zeolites. Journal of Physical Chemistry C, 121(40), 22015–22024. DOI: 10.1021/acs.jpcc.7B04991
  11. Wu, J.Y., Liu, Q.L., Xiong, Y., Zhu, A.M., Chen, Y. (2009). Molecular simulation of water/alcohol mixtures’ adsorption and diffusion in zeolite 4a membranes. Journal of Physical Chemistry B, 113(13), 4267–4274. DOI: 10.1021/JP805923K
  12. Stepanov, A.G., Alkaev, M.M., Shubin, A.A. (2000). Molecular dynamics of iso-butyl alcohol inside zeolite H-ZSM-5 as studied by deuterium solid-state NMR spectroscopy. Journal of Physical Chemistry B, 104(32), 7677–7685. DOI: 10.1021/JP000581E
  13. Pambudi, F.I., Prasetyo, N. (2021). Insight into the structure of the heulandite-type zeolite containing aromatic compounds using periodic density functional theory. Materials Today Communications, 26, 102028. DOI: 10.1016/j.mtcomm.2021.102028
  14. Nastase, S.A.F., Logsdail, A.J., Richard, C., Catlow, A. (2021). QM/MM study of the reactivity of zeolite bound methoxy and carbene groups. Phys Chem Chem Phys, 23, 17634. DOI: 10.1039/d1cp02535j
  15. Nastase, S.A.F., Cnudde, P., Vanduyfhuys, L., De Wispelaere, K., Speybroeck, V. Van, Richard, C., Catlow, A., Logsdail, A.J. (2020). Mechanistic Insight into the Framework Methylation of H-ZSM-5 for Varying Methanol Loadings and Si/Al Ratios Using First-Principles Molecular Dynamics Simulations. https://doi.org/10.1021/acscatal.0c01454
  16. Tian, P., Wei, Y., Ye, M., Liu, Z. (2015). Methanol to olefins (MTO): From fundamentals to commercialization. ACS Catalysis, 5(3), 1922–1938. DOI: 10.1021/acscatal.5B00007
  17. Stöcker, M. (1999). Methanol-to-hydrocarbons: catalytic materials and their behavior. Microporous and Mesoporous Materials, 29(1–2), 3–48. DOI: 10.1016/S1387-1811(98)00319-9
  18. Mahyuddin, M.H., Staykov, A., Shiota, Y., Miyanishi, M., Yoshizawa, K. (2017). Roles of Zeolite Confinement and Cu-O-Cu Angle on the Direct Conversion of Methane to Methanol by [Cu2(μ-O)]2+-Exchanged AEI, CHA, AFX, and MFI Zeolites. ACS Catalysis, 7(6), 3741–3751. DOI: 10.1021/acscatal.7B00588
  19. Chen, J., Li, J., Wei, Y., Yuan, C., Li, B., Xu, S., Zhou, Y., Wang, J., Zhang, M., Liu, Z. (2014). Spatial confinement effects of cage-type SAPO molecular sieves on product distribution and coke formation in methanol-to-olefin reaction. Catalysis Communications, 46, 36–40. DOI: 10.1016/j.catcom.2013.11.016
  20. Li, J., Wei, Y., Chen, J., Xu, S., Tian, P., Yang, X., Li, B., Wang, J., Liu, Z. (2015). Cavity controls the selectivity: Insights of confinement effects on MTO reaction. ACS Catalysis, 5(2), 661–665. DOI: 10.1021/CS501669K
  21. Gao, P., Xu, J., Qi, G., Wang, C., Wang, Q., Zhao, Y., Zhang, Y., Feng, N., Zhao, X., Li, J., Deng, F. (2018). A Mechanistic Study of Methanol-to-Aromatics Reaction over Ga-Modified ZSM-5 Zeolites: Understanding the Dehydrogenation Process. ACS Catalysis, 8(10), 9809–9820. DOI: 10.1021/acscatal.8B03076
  22. Qian, K., Li, L., Chen, P., Xiu, Y., E, Y., Gies, H. (2021). Copper-nickel doped LTA zeolite as a high- efficiency methanol oxidation reaction catalyst in alkaline solution. International Journal of Hydrogen Energy, 46(46), 23898–23905. DOI: 10.1016/j.ijhydene.2021.04.155
  23. Li, X., Sun, Q., Li, Y., Wang, N., Lu, J., Yu, J. (2014). Confinement effect of zeolite cavities on methanol-to-olefin conversion: A density functional theory study. Journal of Physical Chemistry C, 118(43), 24935–24940. DOI: 10.1021/JP505696M
  24. Zhao, D., Cleare, K., Oliver, C., Ingram, C., Cook, D., Szostak, R., Kevan, L. (1998). Characteristics of the synthetic heulandite-clinoptilolite family of zeolites. Microporous and Mesoporous Materials, 21(4–6), 371–379. DOI: 10.1016/S1387-1811(98)00131-0
  25. Schmidt, J.E., Xie, D., Davis, M.E. (2015). High-silica, heulandite-type zeolites prepared by direct synthesis and topotactic condensation. Journal of Materials Chemistry A, 3(24), 12890–12897. DOI: 10.1039/c5ta02354h
  26. Laboy, M.M., Santiago, I., López, G.E. (1999). Computing Adsorption Isotherms for Benzene, Toluene, and p-Xylene in Heulandite Zeolite. Industrial and Engineering Chemistry Research, 38(12), 4938–4945. DOI: 10.1021/ie980732o
  27. Hernández, M.A., Corona, L., Gonzalez, A.I., Rojas, F., Lara, V.H., Silva, F. (2005). Quantitative Study of the Adsorption of Aromatic Hydrocarbons (Benzene, Toluene, and p-Xylene) on Dealuminated Clinoptilolites. Industrial and Engineering Chemistry Research, 44(9), 2908–2916. DOI: 10.1021/IE049276W
  28. Channon, Y.M., Catlow, C.R.A., Gorman, A.M., Jackson, R.A. (1998). Grand Canonical Monte Carlo Investigation of Water Adsorption in Heulandite-type Zeolites. Journal of Physical Chemistry B, 102(21), 4045–4048. DOI: 10.1021/JP980483H
  29. Ockwig, N.W., Cygan, R.T., Hartl, M.A., Daemen, L.L., Nenoff, T.M. (2008). Incoherent Inelastic Neutron Scattering Studies of Nanoconfined Water in Clinoptilolite and Heulandite Zeolites. Journal of Physical Chemistry C, 112(35), 13629–13634. DOI: 10.1021/JP803770V
  30. Baek, W., Ha, S., Hong, S., Kim, S., Kim, Y. (2018). Cation exchange of cesium and cation selectivity of natural zeolites: Chabazite, stilbite, and heulandite. Microporous and Mesoporous Materials, 264, 159–166. DOI: 10.1016/j.micromeso.2018.01.025
  31. Sánchez-Velandia, J.E., Gelves, J.F., Márquez, M.A., Dorkis, L., Villa, A.L. (2020). Catalytic Isomerization of α-Pinene Epoxide Over a Natural Zeolite. Catalysis Letters, 150(11), 3132–3148. DOI: 10.1007/s10562-020-03225-9
  32. Kühne, T.D., Iannuzzi, M., Del Ben, M., Rybkin, V. V., Seewald, P., Stein, F., Laino, T., Khaliullin, R.Z., Schütt, O., Schiffmann, F., Golze, D., Wilhelm, J., Chulkov, S., Bani-Hashemian, M.H., Weber, V., Borštnik, U., Taillefumier, M., Jakobovits, A.S., Lazzaro, A., Pabst, H., Müller, T., Schade, R., Guidon, M., Andermatt, S., Holmberg, N., Schenter, G.K., Hehn, A., Bussy, A., Belleflamme, F., Tabacchi, G., Glöß, A., Lass, M., Bethune, I., Mundy, C.J., Plessl, C., Watkins, M., VandeVondele, J., Krack, M., Hutter, J. (2020). CP2K: An electronic structure and molecular dynamics software package - Quickstep: Efficient and accurate electronic structure calculations. The Journal of Chemical Physics, 152(19), 194103. DOI: 10.1063/5.0007045
  33. Cruciani, G. (2006). Zeolites upon heating: Factors governing their thermal stability and structural changes. Journal of Physics and Chemistry of Solids, 67(9–10), 1973–1994. DOI: 10.1016/j.jpcs.2006.05.057
  34. Alberti, A. (1973). The structure type of heulandite B (heat-collapsed phase). TMPM Tschermaks Mineralogische und Petrographische Mitteilungen, 19(3), 173–184. DOI: 10.1007/BF01167426
  35. Khobaer, T.M., Kuribayashi, T., Komatsu, K., Kudoh, Y. (2008). The partially dehydrated structure of natural heulandite: An in situ high temperature single crystal X-ray diffraction study. Journal of Mineralogical and Petrological Sciences, 103(2), 61–76. DOI: 10.2465/jmps.070306
  36. Valdiviés Cruz, K., Lam, A., Zicovich-Wilson, C.M. (2014). Periodic quantum chemical studies on anhydrous and hydrated acid clinoptilolite. Journal of Physical Chemistry A, 118(31), 5779–5789. DOI: 10.1021/jp410754a
  37. Uzunova, E.L., Mikosch, H. (2013). Cation site preference in zeolite clinoptilolite: A density functional study. Microporous and Mesoporous Materials, 177, 113–119. DOI: 10.1016/j.micromeso.2013.05.003
  38. Koyama, K., Takeuchi, Y. (2014). Clinoptilolite: the distribution of potassium atoms and its role in thermal stability. Zeitschrift für Kristallographie - Crystalline Materials, 145(1–6), 216–239. DOI: 10.1524/zkri.1977.145.16.216
  39. Trypolskyi, A., Zhokh, A., Gritsenko, V., Chen, M., Tang, J., Strizhak, P. (2021). A kinetic study on the methanol conversion to dimethyl ether over H-ZSM-5 zeolite. Chemical Papers, 75(7), 3429–3442. DOI: 10.1007/S11696-021-01586-Y
  40. Park, J., Cho, J., Park, M.J., Lee, W.B. (2021). Microkinetic modeling of DME synthesis from methanol over H-zeolite catalyst: Associative vs. dissociative pathways. Catalysis Today, 375, 314–323. DOI: 10.1016/J.CATTOD.2020.02.011
  41. Moors, S.L.C., De Wispelaere, K., Van Der Mynsbrugge, J., Waroquier, M., Van Speybroeck, V. (2013). Molecular dynamics kinetic study on the zeolite-catalyzed benzene methylation in ZSM-5. ACS Catalysis, 3(11), 2556–2567. DOI: 10.1021/CS400706E
  42. Aboul-Fotouh, S.M.K., Aboul-Gheit, N.A.K., Hassan, M.M.I. (2011). Conversion of Methanol Using Modified H-MOR Zeolite Catalysts. Chinese Journal of Catalysis, 32(3–4), 412–417. DOI: 10.1016/S1872-2067(10)60187-8
  43. Wang, Z., Chen, X.F. (2021). A periodic density functional theory study on methanol adsorption in HSAPO-34 zeolites. Chemical Physics Letters, 771, 138532. DOI: 10.1016/j.cplett.2021.138532
  44. Salehirad, F., Anderson, M.W. (1998). Solid-state NMR studies of adsorption complexes and surface methoxy groups on methanol-sorbed microporous materials. Journal of Catalysis, 177(2), 189–207. DOI: 10.1006/jcat.1998.2096
  45. Aboul-Fotouh, S.M.K., Ali, L.I., Naghmash, M.A., Aboul-Gheit, N.A.K. (2017). Effect of the Si/Al ratio of HZSM-5 zeolite on the production of dimethyl ether before and after ultrasonication. Journal of Fuel Chemistry and Technology, 45(5), 581–588. DOI: 10.1016/S1872-5813(17)30030-0
  46. Bandiera, J., Naccache, C. (1991). Kinetics of methanol dehydration on dealuminated H-mordenite: Model with acid and basic active centres. Applied Catalysis, 69(1), 139–148. DOI: 10.1016/S0166-9834(00)83297-2
  47. Huo, H., Peng, L., Gan, Z., Grey, C.P. (2012). Solid-state MAS NMR studies of Brønsted acid sites in zeolite H-Mordenite. Journal of the American Chemical Society, 134(23), 9708–9720. DOI: 10.1021/JA301963E
  48. Lukyanov, D.B., Vazhnova, T., Cherkasov, N., Casci, J.L., Birtill, J.J. (2014). Insights into Brønsted acid sites in the zeolite mordenite. Journal of Physical Chemistry C, 118(41), 23918–23929. DOI: 10.1021/JP5086334
  49. Peng, L., Chupas, P.J., Grey, C.P. (2004). Measuring Brønsted acid densites in zeolite HY with diphosphine molecules and solid state NMR spectroscopy. Journal of the American Chemical Society, 126(39), 12254–12255. DOI: 10.1021/JA0467519

Last update:

No citation recorded.

Last update:

No citation recorded.