skip to main content

Biomass Valorization to Chemicals over Cobalt Nanoparticles on SBA-15

Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Indonesia

Received: 13 Jul 2022; Revised: 3 Aug 2022; Accepted: 3 Aug 2022; Available online: 7 Aug 2022; Published: 30 Sep 2022.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2022 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image
Abstract

A series of heterogeneous catalysts based on cobalt supported on SBA-15 were prepared through wet impregnation and co-impregnation assisted by ethylene glycol (EG) methods. The cobalt oxide catalysts generated after the drying and calcination process were denoted as CoO/SBA-15w and CoO/SBA-15c for a wet- and co-impregnation method, respectively. Subsequent to the reduction process, the reduced cobalt catalysts were obtained and denoted as Co/SBA-15w and Co/SBA-15c. The TEM images revealed the catalysts prepared through these methods show very clear distinctions that the catalyst prepared by wet impregnation shows large aggregates of cobalt particles on the external surface of SBA-15 due to their inability to enter the channels. The catalysts were evaluated on the hydrocracking of pyrolyzed -cellulose as a biomass model. The results showed that the reduced cobalt-based catalysts are having higher conversion value and selectivity towards the 2-furancarboxaldehyde reached ca. 20%. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA   License (https://creativecommons.org/licenses/by-sa/4.0).

 

Fulltext View|Download
Keywords: Hydrocracking; α-cellulose; heterogeneous catalyst; cobalt; SBA-15
Funding: Ministry of Research Technology and Higher Education/National Research Council (KEMENRISTEK/BRIN) under contract 6/E1/KP.PTNBH/2021)

Article Metrics:

  1. Bridgwater, A.V. (2003). Renewable fuels and chemicals by thermal processing of biomass. Chemical Engineering Journal, 91(2-3), 87–102. DOI: 10.1016/S1385-8947(02)00142-0
  2. Vassilev, S.V., Baxter, D., Andersen, L.K., Vassileva, C.G. (2013). An overview of the composition and application of biomass ash.: Part 2 Potential utilisation, technological and ecological advantages and challenges. Fuel, 105, 19–39. DOI: 10.1016/j.fuel.2012.10.001
  3. Pandey, A., Bhaskar, T., Stöcker, M., Sukumaran, R. (2015). Recent Advances in Thermochemical Conversion of Biomass. Boston: Elsevier. DOI: 10.1016/C2013-0-00403-3
  4. Tan, Z., Chen, K., Liu, P. (2015). Possibilities and challenges of China's forestry biomass resource utilization. Renewable and Sustainable Energy Reviews, 41, 368–378. DOI: 10.1016/j.rser.2014.08.059
  5. Nomiyama, T., Aihara, N., Chitose, A., Yamada, M., Tojo, S. (2014). Biomass as local resource: Research approaches to sustainable biomass systems. Boston: Academic Press
  6. Xiao, L., Zhang, Q., Chen, P., Chen, L., Ding, F., Tang, J., Li, Y.J., Au, C.T., Yin, S.F. (2019). Copper-mediated metal-organic framework as efficient photocatalyst for the partial oxidation of aromatic alcohols under visible-light irradiation: Synergism of plasmonic effect and schottky junction. Applied Catalysis B: Environmental, 248, 380–387. DOI: 10.1016/j.apcatb.2019.02.012
  7. Xiang, Z., Liang, J., Morgan Jr, H.M., Liu, Y., Mao, H., Bu, Q. (2018). Thermal behavior and kinetic study for co-pyrolysis of lignocellulosic biomass with polyethylene over Cobalt modified ZSM-5 catalyst by thermogravimetric analysis. Bioresource Technology, 247, 804–811. DOI: 10.1016/j.biortech.2017.09.178
  8. Bu, Q., Chen, K., Xie, W., Liu, Y., Cao, M., Kong, X., Chu, Q., Mao, H. (2019). Hydrocarbon rich bio-oil production, thermal behavior analysis and kinetic study of microwave-assisted co-pyrolysis of microwave-torrefied lignin with low density polyethylene. Bioresource Technology, 291, 121860. DOI: 10.1016/j.biortech.2019.121860
  9. Kobayashi, H., Komanoya, T., Guha, S.K., Hara, K., Fukuoka, A. (2011). Conversion of cellulose into renewable chemicals by supported metal catalysis. Applied Catalysis A: General, 409–410, 13–20. DOI: 10.1016/j.apcata.2011.10.014
  10. Anwar, Z., Gulfraz, M., Irshad, M. (2014). Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: A brief review. Journal of Radiation Research and Applied Sciences, 7(2), 163–173. DOI: 10.1016/j.jrras.2014.02.003
  11. Mika, L.T., Csefalvay, E., Nemeth, A. (2018). Catalytic Conversion of Carbohydrates to Initial Platform Chemicals: Chemistry and Sustainability. Chemical Reviews, 118(2), 505–613. DOI: 10.1021/acs.chemrev.7b00395
  12. Xiu, S., Shahbazi, A. (2012). Bio-oil production and upgrading research: A review. Renewable and Sustainable Energy Reviews, 16(7), 4406–4414. DOI: 10.1016/j.rser.2012.04.028
  13. Chen, S., Wojcieszak, R., Dumeignil, F., Marceau, E., Royer, S. (2018). How Catalysts and Experimental Conditions Determine the Selective Hydroconversion of Furfural and 5-Hydroxymethylfurfural. Chemical Reviews, 118(22), 11023–11117. DOI: 10.1021/acs.chemrev.8b00134
  14. Hong, M., Min, J., Wu, S., Li, J., Wang, J., Wei, L., Ling, Z., Li, K., Wang, S. (2020). Functionalized expanded corn starch-anchored Cu(I): An efficient and recyclable catalyst for oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran. Applied Organometallic Chemistry, 34(3), e5411. DOI: 10.1002/aoc.5411
  15. Yu, F.W., Ji, D.X., Nie, Y., Luo, Y., Huang, C.J., Ji, J.B. (2012). Study on The Pyrolysis of Cellulose for Bio-oil with Mesoporous Molecular Sieve Catalysts. Applied Biochemistry and Biotechnology, 168, 174–182. DOI: 10.1007/s12010-011-9398-5
  16. Grams, J., Potrzebowska, N., Goscianska, J., Michalkiewicz, B., Ruppert, A.M. (2016). Mesoporous silicas as supports for Ni catalyst used in cellulose conversion to hydrogen rich gas. International Journal of Hydrogen Energy, 41, 8656–8667. DOI: 10.1016/j.ijhydene.2015.12.146
  17. Perego, C., Bosetti, A. (2013). Biomass to fuels: The role of zeolite and mesoporous materials. Microporous and Mesoporous Materials, 144, 28–39. DOI: 10.1016/j.micromeso.2010.11.034
  18. Wang, C.X., Yang, F., Yang, W., Ren, L., Zhang, Y.H., Jia, X., Zhang, L.Q., Li, Y.F. (2015). PdO nanoparticles enhancing the catalytic activity of Pd/carbon nanotubes for 4-nitrophenol reduction. RSC Advances, 5, 27526–27532. DOI: 10.1039/C4RA16792A
  19. Lin, S., Shi, L., Carrott, M.M.L.R., Carrott, P.J.M., Rocha, J., Li, M.R., Zou, X.D. (2011). Direct synthesis without addition of acid of Al-SBA-15 with controllable porosity and high hydrothermal stability. Microporous and Mesoporous Materials, 142(2-3), 526–534. DOI: 10.1016/j.micromeso.2010.12.043
  20. Tao, M., Sin, Z., Meng, X., Bian, Z., Lv, Y. (2017). Highly dispersed nickel within mesochannels of SBA-15 for CO methanation with enhanced activity and excellent thermostability. Fuel, 188, 267–276. DOI: 10.1016/j.fuel.2016.09.081
  21. Lu, J., Fu, B., Kung, M.C., Xiao, G., Elam, J.W., Kung, H.H., Stair, P.C. (2012). Coking- and Sintering-Resistant Palladium Catalysts Achieved Through Atomic Layer Deposition. Science, 335, 1205–1208. DOI: 10.1126/science.1212906
  22. Trisunaryanti, W., Suarsih, E., Triyono, T., Falah, I.I. (2019). Well-dispersed nickel nanoparticles on the external and internal surfaces of SBA-15 for hydrocracking of pyrolyzed α-cellulose. RSC Advances, 9, 1230–1237. DOI: 10.1039/C8RA09034C
  23. Qiu, S., Zhang, Q., Lv, W., Wang, T., Zhang, Q., Ma, L. (2017). Simply packaging Ni nanoparticles inside SBA-15 channels by co-impregnation for dry reforming of methane. RSC Advances, 7, 24551–24560. DOI: 10.1039/C7RA00149E
  24. Xie, T., Shi, L.Y., Zhang, J.P., Zhang, D.S. (2014). Immobilizing Ni nanoparticles to mesoporous silica with size and location control via a polyol-assisted route for coking- and sintering-resistant dry reforming of methane. Chemical Communications, 50, 7250–7253. DOI: 10.1039/C4CC01441C
  25. Lv, X.Y., Chen, J.F., Tan, Y.S., Chang, Y. (2012). A highly dispersed nickel supported catalyst for dry reforming of methane. Catalysis Communications, 20, 6–11. DOI: 10.1016/j.catcom.2012.01.002
  26. Liu, D.P., Quek, X.Y., Cheo, W.N.E., Lau, R., Borgna, A., Yang, Y.H. (2009). MCM-41 supported nickel-based bimetallic catalysts with superior stability during carbon dioxide reforming of methane: Effect of strong metal–support interaction. Journal of Catalysis, 266(2), 380–390. DOI: 10.1016/j.jcat.2009.07.004
  27. Bechara, R., Balloy, D., Vanhove, D. (2001). Catalytic properties of Co/Al2O3 system for hydrocarbon synthesis. Applied Catalysis A: General, 207(1-2), 343–353. DOI: 10.1016/S0926-860X(00)00672-4
  28. Sohn, H., Ozkan, U.S. (2016). Cobalt-based Catalysts for Ethanol Steam Reforming: An Overview. Energy and Fuels, 30(7), 5309–5322. DOI: 10.1021/acs.energyfuels.6b00577
  29. Munnik, P., De Jongh, P.E., De Jong, K.P. (2015). Recent developments in the synthesis of supported catalysts. Chemical Reviews, 115(14), 6687–6718. DOI: 10.1021/cr500486u
  30. Sietsma, J.R.A., Meeldijk, J.D., et al. (2008) Ordered mesoporous silica to study the preparation of Ni/SiO2 ex nitrate catalysts: impregnation, drying, and thermal treatments. Chemistry of Materials, 20(9), 2921–2931. DOI: 10.1021/cm702610h
  31. Barakat, N.A.M., Khil, M.S., Sheikh, F.A., Kim, H.Y. (2008). Synthesis and optical properties of two cobalt oxides (CoO and Co3O4) nanofibers produced by electrospinning process. The Journal of Physical Chemistry C, 112(32), 12225–12233. DOI: 10.1021/jp8027353
  32. Mishra, A., Jain, G., Ninama, S. (2014). Surface, morphology, and X-ray diffraction studies of Co (II) complexes of pyrazole ligands. Journal of Physics: Conference Series, 534, 012034. DOI: 10.1088/1742-6596/534/1/012034
  33. Ansari, K.B., Arora, J.S., Chew, J.W., Dauenhauer, P.J., Mushrif, S.H. (2019). Fast Pyrolysis of Cellulose, Hemicellulose, and Lignin: Effect of Operating Temperature on Bio-oil Yield and Composition and Insights into the Intrinsic Pyrolysis Chemistry. Industrial & Engineering Chemistry Research, 58(35), 15828–15852. DOI: 10.1021/acs.iecr.9b00920
  34. Santos, R.M., Santos, A.O., Sussuchi, E.M., Nascimento, J.S., Lima, A.S., Freitas, L.S. (2015). Pyrolysis of mangaba seed: production and characterization of bio-oil. Bioresource Technology, 196, 43–48. DOI: 10.1016/j.biortech.2015.07.060
  35. Bohre, A., Dutta, S., Saha, B., Abu-Omar, M.M. (2015). Upgrading furfurals to drop-in biofuels: an overview. ACS Sustainable Chemistry & Engineering, 3, 1263–1277. DOI: 10.1021/acssuschemeng.5b00271
  36. Yan, K., Wu, G., Lafleur, T., Jarvis, C. (2014). Production, properties and catalytic hydrogenation of furfural to fuel additives and value-added chemicals. Renewable and Sustainable Energy Reviews, 38, 663–676. DOI: 10.1016/j.rser.2014.07.003
  37. Buntara, T., Noel, S., Phua, P.H., Melián-Cabrera, I., De Vries, J.G., Heeres, H.J. (2011). Caprolactam from renewable resources: Catalytic conversion of 5-hydroxymethylfurfural into caprolactone. Angewandte Chemie International Edition, 50, 7083–7087. DOI: 10.1002/anie.201102156

Last update:

No citation recorded.

Last update:

No citation recorded.