skip to main content

Facile Synthesis and Characterization of Multi-Layer Graphene Growth on Co-Ni Oxide/Al2O3 Substrate Using Chemical Vapour Deposition

Chemical & Environmental Engineering Department, Faculty of Engineering, Universiti Putra Malaysia, 43400, Selangor, Malaysia

Received: 12 Aug 2017; Revised: 15 Feb 2018; Accepted: 18 Feb 2018; Available online: 11 Jun 2018; Published: 1 Aug 2018.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2018 by Authors, Published by BCREC Group under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract

The synthesis and characterization of multilayer graphene (MLG) growth on bimetallic Co-Ni oxide/Al2O3 substrate using chemical vapour deposition (CVD) were investigated. The synthesis of MLG was performed at a temperature range of 700-900 oC. Characterization was carried out using TGA, XRD, FESEM, HRTEM, EDX, XPS, FTIR, and Raman spectroscopy. The MLG growth on the bimetallic substrate was confirmed by XRD, FESEM, and HRTEM analysis. TGA and Raman spectroscopy analyses indicate the formation of thermally stable and high-quality MLG. The kinetic growth of MLG was investigated by varying the reaction temperature and monitoring the partial pressure of the ethanol (C2H5OH) as well as that of hydrogen. The data obtained were fitted to the Langmuir-Hinshelwood kinetic model for the estimation of the reaction rate constants at different temperatures. The results showed that the reaction rate constant increased with temperature and the apparent activation energy of 13.72 kJ.mol-1 was obtained indicating a relatively fast rate of MLG growth. The parity plot obtained for the comparison of the predicted and observed rate of C2H5OH consumptions showed an excellent agreement. This study is important for understanding the growth kinetics of MLG in order to develop appropriate measures that can control the production of MLG thin films for use in the electronic industries. 

Fulltext View|Download
Keywords: Alumina; Bimetallic Cobalt-Nickel Oxide; Chemical Vapour Deposition; Multi-Layer Graphene; Kinetics
Funding: Malaysia’s Ministry of Higher Education (MOHE), provided through the Fundamental Research Grant Scheme (FRGS) Vot. No. 5524471

Article Metrics:

  1. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Novoselov, K. S, Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A. (2011). Electric Field Effect in Atomically Thin Carbon Films. Science, 306(5696): 666-669. doi: 10.1126/science.1102896
  2. Wang, G., Yang, J., Park, J., Gou, X., Wang, B., Liu, H., Wang, G., Yang, J., Park, J., Gou, X., Wang, B., Liu, H., Yao, J. (2008). Facile Synthesis and Characterization of Graphene Nanosheets. J. Phys. Chem. B. 112: 8192-8195. doi: 10.1021/jp710931h
  3. Singh, V., Joung, D., Zhai, L., Das, S., Khondaker, S.I., Seal, S. (2011). Graphene Based Materials: Past, Present and Future. Prog. Mater. Sci. 56: 1178-1271. doi: 10.1016/j.pmatsci.2011.03.003
  4. Lightcap, I.V., Kosel, T.H., Kamat, P.V. (2010). Anchoring Semiconductor and Metal Nanoparticles on a Two-dimensional Catalyst Mat. Storing and Shuttling Electrons with Reduced Graphene Oxide. Nano Lett. 10: 577-583. doi: 10.1021/nl9035109
  5. Williams, G., Kamat, P.V. (2009). Graphene-semiconductor Nanocomposites: Excited-state Interactions Between ZnO Nanoparticles and Graphene Oxide. Langmuir. 25: 13869-13873. doi: 10.1021/la900905h
  6. Moon, J.S., Antcliffe, M., Seo, H.C., Lin, S.C., Schmitz, A., Milosavljevic, I., Moon, J.S., Antcliffe, M., Seo, H.C., Lin, S.C., Schmitz, A., Milosavljevic, I., McCalla, K., Wong, D., Gaskill, D.K,, Campbell, P.M., Lee, K.M. (2012). Graphene Review: An Emerging RF Technology. 2012 IEEE 12th Top Meet Silicon Monolith Integr. Circuits RF Syst. SiRF 2012 - Dig Pap. 199-202. doi: 10.1109/SiRF.2012.6160170
  7. Lian, P., Zhu, X., Liang, S., Li, Z., Yang, W., Wang, H. (2010). Large Reversible Capacity of High Quality Graphene Sheets as an Anode Material for Lithium-ion Batteries. Electrochim. Acta. 55: 3909-3914. doi: 10.1016/j.electacta.2010.02.025
  8. Yu, J., Liu, G., Sumant, A.V., Goyal, V., Balandin, A.A. (2012). Graphene-on-diamond Devices with Increased Current-Carrying Capacity: Carbon sp 2-on-sp 3 Technology. Nano Lett. 12: 1603-1608. doi: 10.1021/nl204545q
  9. Bao, Q., Loh, K.P. (2012). Graphene Photonics, Plasmonics, and Broadband Optoelectronic Devices. ACS Nano. 6: 3677-–3694. doi: 10.1021/nn300989g
  10. Sun, Z., Hasan, T., Torrisi, F., Popa, D., Privitera, G., Wang, F., Bonaccorso, F., Basko, D.M., Ferrari, A.C. (2010). Graphene Mode-locked Ultrafast Laser. ACS Nano. 4: 803-810. doi: 10.1021/nn901703e
  11. Liu, M., Yin, X., Zhang, X. (2012). Double-layer Graphene Optical Modulator. Nano Lett. 12: 1482-1485. doi: 10.1021/nl204202k
  12. Soldano, C., Mahmood, A., Dujardin, E. (2010). Production, Properties and Potential of Graphene. Carbon N. Y. 48: 2127-2150. doi: 10.1016/j.carbon.2010.01.058
  13. Lemme, M.C., Echtermeyer, T.J., Baus, M., Kurz, H. (2007). A Graphene Field-effect Device. IEEE Electron Device Lett. 28: 282–284. doi: 10.1109/LED.2007.891668
  14. Chen, X., Akinwande, D., Lee, K.J., Close, G.F., Yasuda, S., Paul, B.C., Chen, X., Akinwande, D., Lee, K.J., Close, G.F., Yasuda, S., Paul, B.C., Fujita, S., Kong, J., Wong, H.S.P. (2010). Fully Integrated Graphene and Carbon Nanotube Interconnects for Gigahertz High-speed CMOS Electronics. IEEE Trans Electron Devices. 57: 3137-3143. doi: 10.1109/TED.2010.2069562
  15. Terrones, M., Botello-Méndez, A.R., Campos-Delgado, J., López-Urías, F., Vega-Cantú, Y.I., Rodríguez-Macías, F.J., Terrones, M., Botello-Méndez, A.R., Campos-Delgado, J., López-Urías, F., Vega-Cantú, Y.I., Rodríguez-Macías, F.J., Elías, A.L., Munoz-Sandoval, E., Cano-Márquez, A.G., Charlier, J.C., Terrones, H. (2010). Graphene and Graphite Nanoribbons: Morphology, Properties, Synthesis, Defects and Applications. Nano Today. 5: 351-372. doi: 10.1016/j.nantod.2010.06.010
  16. Kaminska, I., Das, M.R., Coffinier, Y., Niedziolka-Jonsson, J., Sobczak, J., Woisel, P., Kaminska, I., Das, M.R., Coffinier, Y., Niedziolka-Jonsson, J., Sobczak, J., Woisel, P., Lyskawa, J., Opallo, M., Boukherroub, R., Szunerits, S. (2012). Reduction and Functionalization of Graphene Oxide Sheets Using Biomimetic Dopamine Derivatives in One Step. ACS Appl. Mater. Interfaces. 4: 1016-1020. doi: 10.1021/am201664n
  17. Khalid, N.R., Hong, Z., Ahmed, E., Zhang, Y., Chan, H., Ahmad, M. (2012). Synergistic Effects of Fe and Graphene on Photocatalytic Activity Enhancement of TiO2 under Visible Light. Appl. Surf. Sci. 258: 5827-5834
  18. doi: 10.1016/j.apsusc.2012.02.110
  19. Zhao, Y., Zhan, L., Tian, J., Nie, S., Ning, Z. (2011). Enhanced Electrocatalytic Oxidation of Methanol on Pd/Polypyrrole-graphene in Alkaline Medium. Electrochim Acta. 56: 1967-1972. doi: 10.1016/j.electacta.2010.12.005
  20. Wang, G., Wang, B., Park, J., Wang, Y., Sun, B., Yao, J. (2009). Highly Efficient and Large-scale Synthesis of Graphene by Electrolytic Exfoliation. Carbon N. Y. 47: 3242-3246. doi: 10.1016/j.carbon.2009.07.040
  21. Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Kleinhammes, A., Jia, Y., Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S.T., Ruoff, R.S. (2007). Synthesis of Graphene-based Nanosheets via Chemical Reduction of Exfoliated Graphite Oxide. Carbon N. Y. 45: 1558-1565. doi: 10.1016/j.carbon.2007.02.034
  22. Mattevi. C., Kim, H., Chhowalla, M. (2011). A Review of Chemical Vapour Deposition of Graphene on Copper. J. Mater. Chem. 21: 3324–3334. doi: 10.1039/C0JM02126A
  23. Yi, M., Shen, Z. (2015). A Review on Mechanical Exfoliation for the Scalable Production of Graphene. J. Mater. Chem. A. 3: 11700–11715. doi: 10.1039/C5TA00252D
  24. Chen, J., Duan, M., Chen, G. (2012). Continuous Mechanical Exfoliation of Graphene Sheets via Three-roll Mill. J. Mater. Chem. 22: 19625. doi: 10.1039/c2jm33740a
  25. Qian, W., Hao, R., Hou, Y., Tian, Y., Shen, C., Gao, H., Qian, W., Hao, R., Hou, Y., Tian, Y., Shen, C., Gao, H., Liang, X. (2009). Solvothermal-assisted Exfoliation Process to Produce Graphene with High Yield and High Quality. Nano Res. 2: 706-712. doi: 10.1007/s12274-009-9074-z
  26. Gilje, S., Han, S., Wang, M., Wang, K.L., Kaner, R.B. (2007). A Chemical Route to Graphene for Device Applications. Nano Lett. 7: 3394-3398. doi: 10.1021/nl0717715
  27. Robinson, J.T., Perkins, F.K., Snow, E.S., Wei, Z., Sheehan, P.E. (2008). Reduced Graphene Oxide Molecular Sensors. Nano Lett. 8: 3137–3140. doi: 10.1021/nl8013007
  28. Marcano, D.C., Kosynkin, D.V., Berlin, J.M., Sinitskii, A., Sun, Z., Slesarev, A., Marcano, D.C., Kosynkin, D.V., Berlin, J.M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L.B., Lu, W., Tour, J.M. (2010). Improved Synthesis of Graphene Oxide. ACS Nano. 4: 4806-4814. doi: 10.1021/nn1006368
  29. Loh, K.P., Bao, Q., Ang, P.K. and Yang, J. (2010). The Chemistry of Graphene. Journal of Materials Chemistry, 20(12): 2277-2289. doi: 10.1039/B920539J
  30. Wei, D., Liu, Y., Wang, Y., Zhang, H., Huang, L., Yu, G. (2009). Synthesis of N-doped Graphene by Chemical Vapor Deposition and Its Electrical Properties. Nano Lett. 9: 1752–1758. doi: 10.1021/nl803279t
  31. Shahil, K.M.F., Balandin, A.A. (2012). Thermal Properties of Graphene and Multilayer Graphene: Applications in Thermal Interface Materials. Solid State Commun. 152: 1331–1340. doi: 10.1016/j.ssc.2012.04.034
  32. Batzill, M. (2012). The Surface Science of Graphene: Metal Interfaces, CVD Synthesis, Nanoribbons, Chemical Modifications, and Defects. Surf. Sci. Rep. 67: 83-115. doi: 10.1016/j.surfrep.2011.12.001
  33. Wang, Y., Xu, X., Lu, J., Lin, M., Bao, Q., Özyilmaz, B., Wang, Y., Xu, X., Lu, J., Lin, M., Bao, Q., Ozyilmaz, B., Loh, K.P. (2010). Toward High Throughput Interconvertible Graphane-to-graphene Growth and Patterning. ACS Nano. 4: 6146-6152. doi: 10.1021/nn1017389
  34. Ogawa, S., Yamada, T., Ishidzuka, S., Yoshigoe, A., Hasegawa, M., Teraoka, Y., Ogawa, S., Yamada, T., Ishidzuka, S., Yoshigoe, A., Hasegawa, M., Teraoka, Y., Takakuwa, Y. (2013). Graphene Growth and Carbon Diffusion Process during Vacuum Heating on Cu (111)/Al2O3 Substrates. Jpn. J. Appl. Phys. 52: 110122
  35. Liu, J., Tao, L., Yang, W., Li, D., Boyer, C., Wuhrer, R., Liu, J., Tao, L., Yang, W., Li, D., Boyer, C., Wuhrer, R., Braet, F., Davis, T.P. (2010). Synthesis, Characterization, and Multilayer Assembly of pH Sensitive Graphene-polymer Nanocomposites. Langmuir. 26: 10068-10075. doi: 10.1021/la1001978
  36. Liu, W-W., Chai, S-P., Mohamed, A.R., Hashim, U. (2014). Synthesis and Characterization of Graphene and Carbon Nanotubes: A Review on the Past and Recent Developments. J. Ind. Eng. Chem. 20: 1171–1185. doi: 10.1016/j.jiec.2013.08.028
  37. Zhao, H., Hui, K.S., Hui, K.N. (2014). Synthesis of Nitrogen-doped Multilayer Graphene from Milk Powder with Melamine and their Application to Fuel Cells. Carbon N. Y. 76: 1–9. doi: 10.1016/j.carbon.2014.04.007
  38. Calizo, I., Balandin, A.A., Bao, W., Miao, F., Lau, C.N. (2007). Temperature Dependence of the Raman Spectra of Graphene and Graphene Multilayers. Nano Lett. 7: 2645–2649. doi: 10.1021/nl071033g
  39. Burton, A.W., Ong, K., Rea, T., Chan, I.Y. (2009). On the Estimation of Average Crystallite Size of Zeolites from the Scherrer Equation: A Critical Evaluation of Its Application to Zeolites with One-dimensional Pore Systems. Microporous Mesoporous Mater. 117: 75-90. doi: 10.1016/j.micromeso.2008.06.010
  40. Calizo, I., Miao, F., Bao, W., Lau, C.N., Balandin, A.A. (2007). Variable Temperature Raman Microscopy as a Nanometrology Tool for Graphene Layers and Graphene-based Devices. Appl. Phys. Lett. 91: 3-5. doi: 10.1063/1.2771379
  41. Zhang, Y-H., Chen, Y-B., Zhou, K-G., Liu, C-H., Zeng, J., Zhang, H-L., Zhang, Y.H., Chen, Y.B., Zhou, K.G., Liu, C.H., Zeng, J., Zhang, H.L., Peng, Y. (2009). Improving Gas Sensing Properties of Graphene by Introducing Dopants and Defects: A First-principles Study. Nanotechnology. 20: 185504. doi: 10.1088/0957-4484/20/18/185504
  42. Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J.W., Potts, J.R., Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J.W., Potts, J.R., Ruoff, R.S. (2010). Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Adv. Mater. 22: 3906-3924. doi: 10.1002/adma.201001068
  43. Zhong, C., Wang, J.Z., Wexler, D., Liu, H.K. (2014). Microwave Autoclave Synthesized Multi-layer Graphene/Single-walled Carbon Nanotube Composites For Free-standing Lithium-ion Battery Anodes. Carbon N. Y. 66: 637–645. doi: 10.1016/j.carbon.2013.09.060
  44. Choudhury, D., Das, B., Sarma, D.D., Rao, C.N.R. (2010). XPS Evidence for Molecular Charge-transfer Doping of Graphene. Chem. Phys. Lett. 497: 66–69. doi: 10.1016/j.cplett.2010.07.089
  45. Eda, B.G., Lin, Y., Mattevi, C., Yamaguchi, H., Chen, H., Chen, I., Eda, G., Lin, Y.Y., Mattevi, C., Yamaguchi, H., Chen, H.A., Chen, I.S.C.W., Chen, C.W., Chhowalla, M. (2010). Blue Photoluminescence from Chemically Derived Graphene Oxide. Adv. Mater. 22: 505-509. doi: 10.1002/adma.200901996
  46. Zhou, F., Sun, W., Ricardo, K.B., Wang, D., Shen, J., Yin, P., Zhou, F., Sun, W., Ricardo, K.B., Wang, D., Shen, J., Yin, P., Liu, H. (2016). Programmably Shaped Carbon Nanostructure from Shape-Conserving Carbonization of DNA. ACS Nano. 10: 3069-3077. doi: 10.1021/acsnano.5b05159
  47. Geng, Y., Wang, S.J., Kim, J.K. (2009). Preparation of Graphite Nanoplatelets and Graphene Sheets. J. Colloid Interface Sci. 336: 592–598. doi: 10.1016/j.jcis.2009.04.005
  48. Malard, L.M., Pimenta, M.A., Dresselhaus, G., Dresselhaus, M.S. (2009). Raman Spectroscopy in Graphene. Phys. Rep. 473: 51-87. doi: 10.1016/j.physrep.2009.02.003
  49. Das, A., Chakraborty, B., Sood, A.K. (2008). Raman Spectroscopy of Graphene on Different Substrates and Influence of Defects. Bull. Mater. Sci. 31: 579–584. doi: 10.1007/s12034-008-0090-5
  50. Yuan, W., Li, C., Li, D., Yang, J., Zeng, X. (2011). Preparation of Single-and Few-layer Graphene Sheets Using Co Deposition on Sic Substrate. J. Nanometer. 2011. doi: 10.1155/2011/319624
  51. Niilisk, A., Kozlova, J., Alles, H., Aarik, J., Sammelselg, V. (2016). Raman Characterization of Stacking in Multi-layer Graphene Grown on Ni. Carbon N. Y. 98: 658–665. doi: 10.1016/j.carbon.2015.11.050
  52. Nguyen, V.T., Le, H.D., Nguyen, V.C., Tam Ngo, T.T., Le, D.Q., Nguyen, X.N., Le, H.D., Ngo, T.T.T., Le, D.Q., Nguyen, X.N., Phan, N.M. (2013). Synthesis of Multi-layer Graphene Films on Copper Tape by Atmospheric Pressure Chemical Vapor Deposition Method. Adv. Nat. Sci. Nanosci. Nanotechnol. 4: 35012. doi: 10.1088/2043-6262/4/3/035012
  53. Shokrian, M., Sadrzadeh, M., Mohammadi, T. (2010). C3H8 Separation from CH4 and H2 using a Synthesized PDMS Membrane: Experimental and Neural Network Modeling. J. Memb. Sci. 346: 59-70. doi: 10.1016/j.memsci.2009.09.015
  54. Senum, G.I., Yang, R.T. (1977). Rational Approximations of the Integral of the Arrhenius Function. J. Therm. Anal. 11: 445-447. doi: 10.1007/BF01903696
  55. Ayodele, B.V., Khan, M.R., Lam, S.S., Cheng, C.K. (2016). Production of CO-rich Hydrogen from Methane Dry Reforming over Lanthania-supported Cobalt Catalyst: Kinetic and Mechanistic Studies. Int. J. Hydrogen Energy. doi: 10.1016/j.ijhydene.2016.01.091
  56. Losurdo, M., Giangregorio, M.M., Capezzuto, P., Bruno, G. (2011). Graphene CVD Growth on Copper and Nickel: Role of Hydrogen in Kinetics and Structure. Phys. Chem. Chem. Phys. 13: 20836. doi: 10.1039/c1cp22347j
  57. Kim, H., Mattevi, C., Calvo, M.R., Oberg, J.C., Artiglia, L., Agnoli, S., Kim, H., Mattevi, C., Calvo, M.R., Oberg, J.C., Artiglia, L., Agnoli, S., Hirjibehedin, C.F., Chhowalla, M., Saiz, E. (2012). Activation Energy Paths for Graphene Nucleation and Growth on Cu. ACS Nano. 6: 3614-3623. doi: 10.1021/nn3008965

Last update:

No citation recorded.

Last update:

No citation recorded.