Facile Synthesis and Characterization of Multi-Layer Graphene Growth on Co-Ni Oxide/Al2O3 Substrate Using Chemical Vapour Deposition

DOI: https://doi.org/10.9767/bcrec.13.2.1453.341-354
Copyright (c) 2018 Bulletin of Chemical Reaction Engineering & Catalysis
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Cover Image

Article Metrics: (Click on the Metric tab below to see the detail)

Article Info
Submitted: 12-08-2017
Published: 11-06-2018
Section: Original Research Articles
Fulltext PDF Tell your colleagues Email the author

The synthesis and characterization of multilayer graphene (MLG) growth on bimetallic Co-Ni oxide/Al2O3 substrate using chemical vapour deposition (CVD) were investigated. The synthesis of MLG was performed at a temperature range of 700-900 oC. Characterization was carried out using TGA, XRD, FESEM, HRTEM, EDX, XPS, FTIR, and Raman spectroscopy. The MLG growth on the bimetallic substrate was confirmed by XRD, FESEM, and HRTEM analysis. TGA and Raman spectroscopy analyses indicate the formation of thermally stable and high-quality MLG. The kinetic growth of MLG was investigated by varying the reaction temperature and monitoring the partial pressure of the ethanol (C2H5OH) as well as that of hydrogen. The data obtained were fitted to the Langmuir-Hinshelwood kinetic model for the estimation of the reaction rate constants at different temperatures. The results showed that the reaction rate constant increased with temperature and the apparent activation energy of 13.72 kJ.mol-1 was obtained indicating a relatively fast rate of MLG growth. The parity plot obtained for the comparison of the predicted and observed rate of C2H5OH consumptions showed an excellent agreement. This study is important for understanding the growth kinetics of MLG in order to develop appropriate measures that can control the production of MLG thin films for use in the electronic industries. Copyright © 2018 BCREC Group. All rights reserved

Received: 12nd August 2017; Revised: 15th February 2018; Accepted: 18th February 2018; Available online: 11st June 2018; Published regularly: 1st August 2018

How to Cite: Ali, M., Rashid, S.A., Hamidon, M.Z., Yasin, F.M. (2018). Facile Synthesis and Characterization of Multi-Layer Graphene Growth on Co-Ni Oxide/Al2O3 Substrate Using Chemical Vapour Deposition. Bulletin of Chemical Reaction Engineering & Catalysis, 13 (2): 341-354 (doi:10.9767/bcrec.13.2.1453.341-354)

 

Keywords

Alumina; Bimetallic Cobalt-Nickel Oxide; Chemical Vapour Deposition; Multi-Layer Graphene; Kinetics

  1. May Ali 
    Chemical & Environmental Engineering Department, Faculty of Engineering, Universiti Putra Malaysia, 43400, Selangor, Malaysia
  2. Suraya Abdul Rashid 
    Chemical & Environmental Engineering Department, Faculty of Engineering, Universiti Putra Malaysia, 43400, Selangor, Malaysia
  3. Mohd Nizar Hamidon 
    Chemical & Environmental Engineering Department, Faculty of Engineering, Universiti Putra Malaysia, 43400, Selangor, Malaysia
  4. Faizah Md Yasin 
    Chemical & Environmental Engineering Department, Faculty of Engineering, Universiti Putra Malaysia, 43400, Selangor, Malaysia
  1. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Novoselov, K. S, Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A. (2011). Electric Field Effect in Atomically Thin Carbon Films. Science, 306(5696): 666-669. doi:10.1126/science. 1102896.
  2. Wang, G., Yang, J., Park, J., Gou, X., Wang, B., Liu, H., Wang, G., Yang, J., Park, J., Gou, X., Wang, B., Liu, H., Yao, J. (2008). Facile Synthesis and Characterization of Graphene Nanosheets. J. Phys. Chem. B. 112: 8192-8195. doi:10.1021/jp710931h.
  3. Singh, V., Joung, D., Zhai, L., Das, S., Khondaker, S.I., Seal, S. (2011). Graphene Based Materials: Past, Present and Future. Prog. Mater. Sci. 56: 1178-1271. doi:10.1016/ j.pmatsci.2011.03.003.
  4. Lightcap, I.V., Kosel, T.H., Kamat, P.V. (2010). Anchoring Semiconductor and Metal Nanoparticles on a Two-dimensional Catalyst Mat. Storing and Shuttling Electrons with Reduced Graphene Oxide. Nano Lett. 10: 577-583. doi:10.1021/nl9035109.
  5. Williams, G., Kamat, P.V. (2009). Graphene-semiconductor Nanocomposites: Excited-state Interactions Between ZnO Nanoparticles and Graphene Oxide. Langmuir. 25: 13869-13873. doi:10.1021/la900905h.
  6. Moon, J.S., Antcliffe, M., Seo, H.C., Lin, S.C., Schmitz, A., Milosavljevic, I., Moon, J.S., Antcliffe, M., Seo, H.C., Lin, S.C., Schmitz, A., Milosavljevic, I., McCalla, K., Wong, D., Gaskill, D.K,, Campbell, P.M., Lee, K.M. (2012). Graphene Review: An Emerging RF Technology. 2012 IEEE 12th Top Meet Silicon Monolith Integr. Circuits RF Syst. SiRF 2012 - Dig Pap. 199-202. doi:10.1109/ SiRF.2012.6160170.
  7. Lian, P., Zhu, X., Liang, S., Li, Z., Yang, W., Wang, H. (2010). Large Reversible Capacity of High Quality Graphene Sheets as an Anode Material for Lithium-ion Batteries. Electrochim. Acta. 55: 3909-3914. doi:10.1016/ j.electacta.2010.02.025.
  8. Yu, J., Liu, G., Sumant, A.V., Goyal, V., Balandin, A.A. (2012). Graphene-on-diamond Devices with Increased Current-Carrying Capacity: Carbon sp 2-on-sp 3 Technology. Nano Lett. 12: 1603-1608. doi:10.1021/nl204545q.
  9. Bao, Q., Loh, K.P. (2012). Graphene Photonics, Plasmonics, and Broadband Optoelectronic Devices. ACS Nano. 6: 3677-–3694. doi:10.1021/nn300989g.
  10. Sun, Z., Hasan, T., Torrisi, F., Popa, D., Privitera, G., Wang, F., Bonaccorso, F., Basko, D.M., Ferrari, A.C. (2010). Graphene Mode-locked Ultrafast Laser. ACS Nano. 4: 803-810. doi:10.1021/ nn901703e.
  11. Liu, M., Yin, X., Zhang, X. (2012). Double-layer Graphene Optical Modulator. Nano Lett. 12: 1482-1485. doi:10.1021/nl204202k.
  12. Soldano, C., Mahmood, A., Dujardin, E. (2010). Production, Properties and Potential of Graphene. Carbon N. Y. 48: 2127-2150. doi:10.1016/j.carbon.2010.01.058.
  13. Lemme, M.C., Echtermeyer, T.J., Baus, M., Kurz, H. (2007). A Graphene Field-effect Device. IEEE Electron Device Lett. 28: 282–284. doi:10.1109/LED.2007.891668.
  14. Chen, X., Akinwande, D., Lee, K.J., Close, G.F., Yasuda, S., Paul, B.C., Chen, X., Akinwande, D., Lee, K.J., Close, G.F., Yasuda, S., Paul, B.C., Fujita, S., Kong, J., Wong, H.S.P. (2010). Fully Integrated Graphene and Carbon Nanotube Interconnects for Gigahertz High-speed CMOS Electronics. IEEE Trans Electron Devices. 57: 3137-3143. doi:10.1109/ TED.2010.2069562.
  15. Terrones, M., Botello-Méndez, A.R., Campos-Delgado, J., López-Urías, F., Vega-Cantú, Y.I., Rodríguez-Macías, F.J., Terrones, M., Botello-Méndez, A.R., Campos-Delgado, J., López-Urías, F., Vega-Cantú, Y.I., Rodríguez-Macías, F.J., Elías, A.L., Munoz-Sandoval, E., Cano-Márquez, A.G., Charlier, J.C., Terrones, H. (2010). Graphene and Graphite Nanoribbons: Morphology, Properties, Synthesis, Defects and Applications. Nano Today. 5: 351-372. doi:10.1016/j.nantod.2010.06.010.
  16. Kaminska, I., Das, M.R., Coffinier, Y., Niedziolka-Jonsson, J., Sobczak, J., Woisel, P., Kaminska, I., Das, M.R., Coffinier, Y., Niedziolka-Jonsson, J., Sobczak, J., Woisel, P., Lyskawa, J., Opallo, M., Boukherroub, R., Szunerits, S. (2012). Reduction and Functionalization of Graphene Oxide Sheets Using Biomimetic Dopamine Derivatives in One Step. ACS Appl. Mater. Interfaces. 4: 1016-1020. doi:10.1021/am201664n.
  17. Khalid, N.R., Hong, Z., Ahmed, E., Zhang, Y., Chan, H., Ahmad, M. (2012). Synergistic Effects of Fe and Graphene on Photocatalytic Activity Enhancement of TiO2 under Visible Light. Appl. Surf. Sci. 258: 5827-5834.
  18. doi:10.1016/j.apsusc.2012.02.110.
  19. Zhao, Y., Zhan, L., Tian, J., Nie, S., Ning, Z. (2011). Enhanced Electrocatalytic Oxidation of Methanol on Pd/Polypyrrole-graphene in Alkaline Medium. Electrochim Acta. 56: 1967-1972. doi:10.1016/ j.electacta.2010.12.005.
  20. Wang, G., Wang, B., Park, J., Wang, Y., Sun, B., Yao, J. (2009). Highly Efficient and Large-scale Synthesis of Graphene by Electrolytic Exfoliation. Carbon N. Y. 47: 3242-3246. doi:10.1016/j.carbon.2009.07.040.
  21. Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Kleinhammes, A., Jia, Y., Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S.T., Ruoff, R.S. (2007). Synthesis of Graphene-based Nanosheets via Chemical Reduction of Exfoliated Graphite Oxide. Carbon N. Y. 45: 1558-1565. doi:10.1016/j.carbon. 2007.02.034.
  22. Mattevi. C., Kim, H., Chhowalla, M. (2011). A Review of Chemical Vapour Deposition of Graphene on Copper. J. Mater. Chem. 21: 3324–3334. doi:10.1039/C0JM02126A.
  23. Yi, M., Shen, Z. (2015). A Review on Mechanical Exfoliation for the Scalable Production of Graphene. J. Mater. Chem. A. 3: 11700–11715. doi:10.1039/C5TA00252D.
  24. Chen, J., Duan, M., Chen, G. (2012). Continuous Mechanical Exfoliation of Graphene Sheets via Three-roll Mill. J. Mater. Chem. 22: 19625. doi:10.1039/c2jm33740a.
  25. Qian, W., Hao, R., Hou, Y., Tian, Y., Shen, C., Gao, H., Qian, W., Hao, R., Hou, Y., Tian, Y., Shen, C., Gao, H., Liang, X. (2009). Solvothermal-assisted Exfoliation Process to Produce Graphene with High Yield and High Quality. Nano Res. 2: 706-712. doi:10.1007/s12274-009-9074-z.
  26. Gilje, S., Han, S., Wang, M., Wang, K.L., Kaner, R.B. (2007). A Chemical Route to Graphene for Device Applications. Nano Lett. 7: 3394-3398. doi:10.1021/nl0717715.
  27. Robinson, J.T., Perkins, F.K., Snow, E.S., Wei, Z., Sheehan, P.E. (2008). Reduced Graphene Oxide Molecular Sensors. Nano Lett. 8: 3137–3140. doi:10.1021/nl8013007.
  28. Marcano, D.C., Kosynkin, D.V., Berlin, J.M., Sinitskii, A., Sun, Z., Slesarev, A., Marcano, D.C., Kosynkin, D.V., Berlin, J.M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L.B., Lu, W., Tour, J.M. (2010). Improved Synthesis of Graphene Oxide. ACS Nano. 4: 4806-4814. doi:10.1021/nn1006368.
  29. Loh, K.P., Bao, Q., Ang, P.K. and Yang, J. (2010). The Chemistry of Graphene. Journal of Materials Chemistry, 20(12): 2277-2289. doi:10.1039/B920539J.
  30. Wei, D., Liu, Y., Wang, Y., Zhang, H., Huang, L., Yu, G. (2009). Synthesis of N-doped Graphene by Chemical Vapor Deposition and Its Electrical Properties. Nano Lett. 9: 1752–1758. doi:10.1021/nl803279t.
  31. Shahil, K.M.F., Balandin, A.A. (2012). Thermal Properties of Graphene and Multilayer Graphene: Applications in Thermal Interface Materials. Solid State Commun. 152: 1331–1340. doi:10.1016/j.ssc.2012.04.034.
  32. Batzill, M. (2012). The Surface Science of Graphene: Metal Interfaces, CVD Synthesis, Nanoribbons, Chemical Modifications, and Defects. Surf. Sci. Rep. 67: 83-115. doi:10.1016/j.surfrep.2011.12.001.
  33. Wang, Y., Xu, X., Lu, J., Lin, M., Bao, Q., Özyilmaz, B., Wang, Y., Xu, X., Lu, J., Lin, M., Bao, Q., Ozyilmaz, B., Loh, K.P. (2010). Toward High Throughput Interconvertible Graphane-to-graphene Growth and Patterning. ACS Nano. 4: 6146-6152. doi:10.1021/ nn1017389.
  34. Ogawa, S., Yamada, T., Ishidzuka, S., Yoshigoe, A., Hasegawa, M., Teraoka, Y., Ogawa, S., Yamada, T., Ishidzuka, S., Yoshigoe, A., Hasegawa, M., Teraoka, Y., Takakuwa, Y. (2013). Graphene Growth and Carbon Diffusion Process during Vacuum Heating on Cu (111)/Al2O3 Substrates. Jpn. J. Appl. Phys. 52: 110122.
  35. Liu, J., Tao, L., Yang, W., Li, D., Boyer, C., Wuhrer, R., Liu, J., Tao, L., Yang, W., Li, D., Boyer, C., Wuhrer, R., Braet, F., Davis, T.P. (2010). Synthesis, Characterization, and Multilayer Assembly of pH Sensitive Graphene-polymer Nanocomposites. Langmuir. 26: 10068-10075. doi:10.1021/la1001978.
  36. Liu, W-W., Chai, S-P., Mohamed, A.R., Hashim, U. (2014). Synthesis and Characterization of Graphene and Carbon Nanotubes: A Review on the Past and Recent Developments. J. Ind. Eng. Chem. 20: 1171–1185. doi:10.1016/j.jiec.2013.08.028.
  37. Zhao, H., Hui, K.S., Hui, K.N. (2014). Synthesis of Nitrogen-doped Multilayer Graphene from Milk Powder with Melamine and their Application to Fuel Cells. Carbon N. Y. 76: 1–9. doi:10.1016/j.carbon.2014.04.007.
  38. Calizo, I., Balandin, A.A., Bao, W., Miao, F., Lau, C.N. (2007). Temperature Dependence of the Raman Spectra of Graphene and Graphene Multilayers. Nano Lett. 7: 2645–2649. doi:10.1021/nl071033g.
  39. Burton, A.W., Ong, K., Rea, T., Chan, I.Y. (2009). On the Estimation of Average Crystallite Size of Zeolites from the Scherrer Equation: A Critical Evaluation of Its Application to Zeolites with One-dimensional Pore Systems. Microporous Mesoporous Mater. 117: 75-90. doi:10.1016/j.micromeso.2008.06.010.
  40. Calizo, I., Miao, F., Bao, W., Lau, C.N., Balandin, A.A. (2007). Variable Temperature Raman Microscopy as a Nanometrology Tool for Graphene Layers and Graphene-based Devices. Appl. Phys. Lett. 91: 3-5. doi:10.1063/ 1.2771379.
  41. Zhang, Y-H., Chen, Y-B., Zhou, K-G., Liu, C-H., Zeng, J., Zhang, H-L., Zhang, Y.H., Chen, Y.B., Zhou, K.G., Liu, C.H., Zeng, J., Zhang, H.L., Peng, Y. (2009). Improving Gas Sensing Properties of Graphene by Introducing Dopants and Defects: A First-principles Study. Nanotechnology. 20: 185504. doi:10.1088/0957-4484/20/18/185504.
  42. Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J.W., Potts, J.R., Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J.W., Potts, J.R., Ruoff, R.S. (2010). Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Adv. Mater. 22: 3906-3924. doi:10.1002/adma.201001068.
  43. Zhong, C., Wang, J.Z., Wexler, D., Liu, H.K. (2014). Microwave Autoclave Synthesized Multi-layer Graphene/Single-walled Carbon Nanotube Composites For Free-standing Lithium-ion Battery Anodes. Carbon N. Y. 66: 637–645. doi:10.1016/j.carbon.2013.09.060.
  44. Choudhury, D., Das, B., Sarma, D.D., Rao, C.N.R. (2010). XPS Evidence for Molecular Charge-transfer Doping of Graphene. Chem. Phys. Lett. 497: 66–69. doi:10.1016/ j.cplett.2010.07.089.
  45. Eda, B.G., Lin, Y., Mattevi, C., Yamaguchi, H., Chen, H., Chen, I., Eda, G., Lin, Y.Y., Mattevi, C., Yamaguchi, H., Chen, H.A., Chen, I.S.C.W., Chen, C.W., Chhowalla, M. (2010). Blue Photoluminescence from Chemically Derived Graphene Oxide. Adv. Mater. 22: 505-509. doi:10.1002/adma.200901996.
  46. Zhou, F., Sun, W., Ricardo, K.B., Wang, D., Shen, J., Yin, P., Zhou, F., Sun, W., Ricardo, K.B., Wang, D., Shen, J., Yin, P., Liu, H. (2016). Programmably Shaped Carbon Nanostructure from Shape-Conserving Carbonization of DNA. ACS Nano. 10: 3069-3077. doi:10.1021/acsnano.5b05159.
  47. Geng, Y., Wang, S.J., Kim, J.K. (2009). Preparation of Graphite Nanoplatelets and Graphene Sheets. J. Colloid Interface Sci. 336: 592–598. doi:10.1016/j.jcis.2009.04.005.
  48. Malard, L.M., Pimenta, M.A., Dresselhaus, G., Dresselhaus, M.S. (2009). Raman Spectroscopy in Graphene. Phys. Rep. 473: 51-87. doi:10.1016/j.physrep.2009.02.003.
  49. Das, A., Chakraborty, B., Sood, A.K. (2008). Raman Spectroscopy of Graphene on Different Substrates and Influence of Defects. Bull. Mater. Sci. 31: 579–584. doi:10.1007/s12034-008-0090-5.
  50. Yuan, W., Li, C., Li, D., Yang, J., Zeng, X. (2011). Preparation of Single-and Few-layer Graphene Sheets Using Co Deposition on Sic Substrate. J. Nanometer. 2011. doi:10.1155/ 2011/319624.
  51. Niilisk, A., Kozlova, J., Alles, H., Aarik, J., Sammelselg, V. (2016). Raman Characterization of Stacking in Multi-layer Graphene Grown on Ni. Carbon N. Y. 98: 658–665. doi:10.1016/j.carbon.2015.11.050.
  52. Nguyen, V.T., Le, H.D., Nguyen, V.C., Tam Ngo, T.T., Le, D.Q., Nguyen, X.N., Le, H.D., Ngo, T.T.T., Le, D.Q., Nguyen, X.N., Phan, N.M. (2013). Synthesis of Multi-layer Graphene Films on Copper Tape by Atmospheric Pressure Chemical Vapor Deposition Method. Adv. Nat. Sci. Nanosci. Nanotechnol. 4: 35012. doi:10.1088/2043-6262/4/3/035012.
  53. Shokrian, M., Sadrzadeh, M., Mohammadi, T. (2010). C3H8 Separation from CH4 and H2 using a Synthesized PDMS Membrane: Experimental and Neural Network Modeling. J. Memb. Sci. 346: 59-70. doi:10.1016/ j.memsci.2009.09.015.
  54. Senum, G.I., Yang, R.T. (1977). Rational Approximations of the Integral of the Arrhenius Function. J. Therm. Anal. 11: 445-447. doi:10.1007/BF01903696.
  55. Ayodele, B.V., Khan, M.R., Lam, S.S., Cheng, C.K. (2016). Production of CO-rich Hydrogen from Methane Dry Reforming over Lanthania-supported Cobalt Catalyst: Kinetic and Mechanistic Studies. Int. J. Hydrogen Energy. doi:10.1016/j.ijhydene.2016.01.091.
  56. Losurdo, M., Giangregorio, M.M., Capezzuto, P., Bruno, G. (2011). Graphene CVD Growth on Copper and Nickel: Role of Hydrogen in Kinetics and Structure. Phys. Chem. Chem. Phys. 13: 20836. doi:10.1039/c1cp22347j.
  57. Kim, H., Mattevi, C., Calvo, M.R., Oberg, J.C., Artiglia, L., Agnoli, S., Kim, H., Mattevi, C., Calvo, M.R., Oberg, J.C., Artiglia, L., Agnoli, S., Hirjibehedin, C.F., Chhowalla, M., Saiz, E. (2012). Activation Energy Paths for Graphene Nucleation and Growth on Cu. ACS Nano. 6: 3614-3623. doi:10.1021/ nn3008965.