skip to main content

Reusable Catalyst of KF/Mg-Al Layered Double for Biodiesel Conversion and Optimization using Bohn-Behnken Design

1Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Ahmad Dahlan, Kampus 4, Jl. Ringroad Selatan, Kragilan, Yogyakarta, Indonesia

2Department of Chemistry, Faculty of Science, Islamic University of Madinah, Al-Madinah Al-Munawwarah 42351, Saudi Arabia

3Universiti Teknologi MARA Negeri Sembilan, Kampus Kuala Pilah, Kuala Pilah, Negeri Sembilan, Malaysia

4 Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Kampus Terpadu UII, Jl. Kaliurang Km 14, Sleman, Yogyakarta, Indonesia

View all affiliations
Received: 6 Jun 2022; Revised: 22 Jun 2022; Accepted: 22 Jun 2022; Available online: 4 Jul 2022; Published: 30 Sep 2022.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2022 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image

This work aimed to synthesize a reusable catalyst of KF/Mg-Al layered double hydroxide (KF/LDH) for a microwave-assisted biodiesel conversion from rice bran oil (RBO). The LDH was synthesized by co-precipitation method of Mg and Al precursors with additional surfactant of cetyl trimethyl ammonium followed by hydrothermal method, for furthermore, an impregnation procedure was applied to combine KF with LDH by using impregnation method. Instrumental analysis of materials was performed by XRD, gas sorption analysis, SEM-EDX, TEM and XPS method. Effect of KF loading onto LDH on the specific surface area and solid basicity was also studied. From the characterization by XRD, it can be concluded that the impregnation increased specific surface area of LDH without any structural destruction, which was also confirmed by the lattice fringe comparison by HRTEM analysis and surface analysis by XPS. The specific surface area enhancement is in line with the increasing solid basicity which directly enhanced the catalytic conversion of RBO into biodiesel. Statistical optimization of the use of KF/LDH was conducted by response surface methodology of Box-Behnken Design for the range of 2–4 g/100 mL of catalyst dose, 3–8 of the methanol to oil ratio, and 10–30 min of reaction time. It was revealed that all factors are significantly affect the yield. The KF/LDH catalyst is also reusable as it does not loss the activity until 5th cycles. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (


Fulltext View|Download
Keywords: Biodiesel; Microwave-assisted reaction; Layered Double Hydroxides; Basic catalyst
Funding: Universitas Islam Indonesia; Universitas Ahmad Dahlan; UiTM Cawangan Negeri Sembilan

Article Metrics:

  1. Tabatabaei, M., Karimi, K., Horváth, I.S., Kumar, R. (2015). Recent trends in biodiesel production. Biofuel Research Journal, 2(3), 258–267. DOI: 10.18331/BRJ2015.2.3.4
  2. Farobie, O., Hartulistiyoso, E. (2022). Palm Oil Biodiesel as a Renewable Energy Resource in Indonesia: Current Status and Challenges. Bioenergy Research., 15, 93–111. DOI: 10.1007/s12155-021-10344-7
  3. Faruque, M.O., Razzak, S.A., Hossain, M.M. (2020). Application of heterogeneous catalysts for biodiesel production from microalgal oil - a review, Catalysts, 10(9), 1025. DOI: 10.3390/catal10091025
  4. Kolakoti, A., Setiyo, M., Latifur, M. (2022). A Green Heterogeneous Catalyst Production and Characterization for Biodiesel Production using RSM and ANN Approach, International Journal of Renewable Energy Development. 11(3), 703–712. DOI: 10.14710/ijred.2022.43627
  5. Mukhtar, A., Saqib, S., Lin, H., UlHassan, M., Ullah, S., Younas, M., Rezakazemi, M., Ibrahim, M., Mahmood, A., Asifh, S., Bokhari, A. (2022). Current status and challenges in the heterogeneous catalysis for biodiesel production. Renewable and Sustainable Energy Review, 157, 112012. DOI: 10.1016/j.rser.2021.112012
  6. Vilas-Bôas, R.N., da Silva, L.L.C., Fernandes, L.D., Augusto, B.L., Mendes, M.F. (2020). Study of the Use of Hydrotalcite–Hydroxyapatite as Heterogeneous Catalysts for Application in Biodiesel Using By-Product as Raw Material. Catalysis Letters, 150, 3642–3652. DOI: 10.1007/s10562-020-03274-0
  7. Dahdah, E., Estephane, J., Taleb, Y., El Khoury, B., Nakati, J. (2021). The role of rehydration in enhancing the basic properties of Mg–Al hydrotalcites for biodiesel production, Sustainable Chemistry and Pharmacy, 22, 100487. DOI: 10.1016/j.scp.2021.100487
  8. Chen, J., Jia, L., Guo, X., Xiang, L., Lou, S. (2014). Production of novel biodiesel from transesterification over KF-modified Ca–Al hydrotalcite catalyst. RSC Advance, 4(104), 60025–60033. DOI: 10.1039/C4RA09214G
  9. Fatimah, I., Rubiyanto, D., Nugraha, J. (2018). Preparation, characterization, and modelling activity of potassium flouride modified hydrotalcite for microwave assisted biodiesel conversion. Sustainable Chemistry Pharmacy, 8, 63–70. DOI: 10.1016/j.scp.2018.02.004
  10. Khan, H.M., Iqbal, T., Mujtaba, M.A., SOudagar, M.E.M., Veza, I., Fattah, I.M. (2021). Microwave Assisted Biodiesel production Using Heterogeneous Catalysts. Energies, 14, 8135. DOI: 10.3390/en14238135
  11. Sakr, A.A.E., Zaki, T., Elgabry, O., Ebiad, M.A., El-Sabagh, S.M., Emara, M.M. (2018). Mg-Zn-Al LDH: Influence of intercalated anions on CO2 removal from natural gas. Applied Clay Science, 160, 263–269. DOI: 10.1016/j.clay.2018.02.043
  12. Liao, L., Zhao, N., Xia, Z. (2012). Hydrothermal synthesis of Mg–Al layered double hydroxides (LDHs) from natural brucite and Al(OH)3. Materials Research Bulletin, 47(11), 3897–3901. DOI: 10.1016/j.materresbull.2012.07.007
  13. Wiyantoko, B., Kurniawati, P., Purbaningtias, T.E., Jauhari, M.H., Yahya, A., Tamyiz, M., Fatimah, I., Doong, R. (2022). Assessing the effect of calcination on adsorption capability of Mg/Al layer double hydroxides (LDHs). Material Research Express, 9(3), 035505. DOI: 10.1088/2053-1591/ac5ef7
  14. Sandesh, S., Shanbhag, G.V., Halgeri, A.B. (2013). Transesterification of Glycerol to Glycerol Carbonate Using KF/Al2O3 Catalyst: The Role of Support and Basicity. Catalysis Letters, 143(11), 1226–1234. DOI: 10.1007/s10562-013-1043-1
  15. Islam, M.R., Guo, Z., Rutman, D., Benson, T.J. (2013). Immobilization of triazabicyclodecene in surfactant modified Mg/Al layered double hydroxides. RSC Advances, 3(46), 24247–24255. DOI: 10.1039/c3ra43051k
  16. Chakraborty, S., Kumar, M., Suresh, K., Pugazhenthi, G. (2014). Influence of organically modified NiAl layered double hydroxide (LDH) loading on the rheological properties of poly (methyl methacrylate) (PMMA)/LDH blend solution. Powder Technology, 256, 196–203. DOI: 10.1016/j.powtec.2014.02.035
  17. Yanming, S., Dongbin, L., Shifeng, L., Lihui, F., Shuai, C., Haque, M.A. (2017). Removal of lead from aqueous solution on glutamate intercalated layered double hydroxide. Arabian Journal of Chemistry, 10, S2295–S2301. DOI: 10.1016/j.arabjc.2013.08.005
  18. Oh, J.H., Kang, Y.S., Kang, S.W. (2013). Poly(vinylpyrrolidone)/KF electrolyte membranes for facilitated CO2 transport. Chemistry Communications, 49(86), 10181–10183. DOI: 10.1039/c3cc46253f
  19. Kloprogge, J.T., Ponce, C.P., Ortillo, D.O. (2021). X-ray Photoelectron Spectroscopy Study of Some Organic and Inorganic Modified Clay Minerals. Materials, 14, 7115. DOI: 10.3390/ma14237115
  20. Benhiti, R., Ichou, A.A., Zaghloul, A., Aziam, R., Carja, G., Zerbet, M., Sinan, F. (2020). Synthesis, characterization, and comparative study of MgAl-LDHs prepared by standard coprecipitation and urea hydrolysis methods for phosphate removal. Enviromental Science and Pollution Research, 27(36), 45767–45774. DOI: 10.1007/s11356-020-10444-5
  21. Chen, C., Wangriya, A., Buffet, J.C., O’Hare, D. (2015). Tuneable ultra high specific surface area Mg/Al-CO3 layered double hydroxides. Dalton Transactions, 44(37), 16392–16398. DOI: 10.1039/c5dt02641e
  22. Rahman, A., Pullabhotla, R.V.S. (2022). Layered Double Hydroxide Catalysts Preparation, Characterization and Applications for Process Development: An Environmentally Green Approach. Bulletin of Chemical Reaction Engineering & Catalysis, 17(1), 163–193. DOI: 10.9767/bcrec.17.1.12195.163-193
  23. Palapa, N.R., Saria, Y., Taher, T., Mohadi, R., Lesbani, A. (2019). Synthesis and Characterization of Zn/Al, Zn/Fe, and Zn/Cr Layered Double Hydroxides : Effect of M3+ Ions Toward Layer Formation. Science & Technology Indonesia, 4(2), 4–7. DOI: 10.26554/sti.2019.4.2.36-39
  24. Mas’ud, F., Mahendradatta, M., Laga, A., Zainal, Z. (2017). Component, Fatty Acid And Mineral Composition of Rice Bran Oil Extracted By Multistage With Hexane and Ethanol. International Journal of Scientific & Technology Research, 6(11), 63–69
  25. Hamzah, N., Fazira, N. Erma, E., Hafiza, E., Tajuddin, N.A. (2020). MgAl Mixed Oxide Derived Alkali-free Hydrotalcite for Transesterification of Waste Cooking Oil to Biodiesel. ASM Science Journal, 13, 1-7. DOI: 0.32802/asmscj.2020.416
  26. Gao, L., Teng, G., Lv, J., Xiao, G. (2010). Biodiesel Synthesis Catalyzed by the KF/Ca−Mg−Al Hydrotalcite Base Catalyst. Energy & Fuels, 24(1), 646–651. DOI: 10.1021/ef900800d
  27. Zhang, C.-Y., SHao, W.-L., Zhao, W.-X., Han, Y.-Y., Zheng, Y., Liu, Y.-J. (2019). Biodiesel Production by Esterification Reaction on K+ Modified MgAl-Hydrotalcite Catalysts, Catalysts, 9, 742. DOI: 10.3390/catal9090742
  28. Silitonga, A.S., Shamsuddin, A.H. Mahlia, T.M.I., Milanod, J., Kusumo, J., Siswantoro, J., Dharma, S., Sebayang, A.A., Masjuki, H.H., Ong, H.S. (2020). Biodiesel synthesis from Ceiba pentandra oil by microwave irradiation- assisted transesteri fi cation : ELM modeling and optimization. Renewable Energy, 146, 1278–1291. DOI: 10.1016/j.renene.2019.07.065
  29. Gholipour, N., Arash, Z., Pirzaman, K., Khalajzadeh, M. (2020). Synthesis of modified layered double hydroxide of MgAl catalyst with Ba and Li for the biodiesel production. Clean Technology and Environmental Policy, 22, 1173–1185. DOI: 10.1007/s10098-020-01860-9

Last update:

No citation recorded.

Last update:

No citation recorded.