skip to main content

Enhanced Photocatalytic Activity of La3+ doped Bicrystalline Titania Prepared via Combustion method for the Degradation of Cationic dye Under Solar Illumination

1Department of Chemistry, Christ University, Bangalore-560029, Karnataka, India

2Department of Sciences & Humanities, Christ University, Bangalore-560074, Karnataka, India

Received: 28 Jul 2017; Revised: 19 Oct 2017; Accepted: 30 Oct 2017; Available online: 22 Jan 2018; Published: 2 Apr 2018.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2018 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image

La3+ doped TiO2 photocatalysts were successfully synthesized by combustion method in the presence of urea and were characterized by various physico-chemical techniques. Further, the photocatalytic performance of the synthesized catalysts was monitored by photocatalytic degradation of synthetic cationic dye-Methylene Blue (MB) under solar illumination. The bicrystalline phase of anatase and rutile was confirmed by X-ray diffraction analysis. Moreover, the transformation from anatase to rutile phase proceeds at a slower rate in the La3+ doped TiO2 catalysts. Effective separation of charge carriers, a synergistic effect in the bicrystalline framework of anatase and rutile, smaller crystallite size, and higher concentration of surface adsorbed hydroxyl groups helped these catalysts to show improved activity for the dye degradation. 

Fulltext View|Download
Keywords: Titania, La3+ doped titania; combustion synthesis; photocatalysis; degradation of cationic dye.

Article Metrics:

  1. Mills, A., Le, Hunte S. (1997). An overview of semiconductor photocatalysis, J. Photochem. Photobio. A: Chem., 108: 1-35
  2. Fox, M. A., Dulay, M. T. (1993). Heterogeneous Photocatalysis, Chem. Rev., 93: 341-357
  3. Wang, Z., Liu, X., Li, W., Wang, H., Li, H. (2014). Enhancing the photocatalytic degradation of salicylic acid by using molecular imprinted S-doped TiO2 under simulated solar light, Ceramics International, 40: 8863-8867
  4. Zhang, Y., Cheng, K., Lv, F., Huang, H., Fei, B., He, Y., Ye, Z., Shen, B. (2014). Photocatalytic treatment of 2,4,6-trinitotoluene in red water by multi-doped TiO2 with enhanced visible light photocatalytic activity, Colloids Surf. A Physicochem. Eng. Asp, 452: 103-108
  5. Lin, Y. T., Weng, C. H., Chen, F. Y. (2014). Key operating parameters affecting photocatalytic activity of visible-light-induced C-doped TiO2 catalyst for ethylene oxidation, Chem. Eng. J., 248: 175-183
  6. Yang, Y., Ferreira, J. M. F. (1998). Inhibitory Effect of the Al2O3 – SiO2 Mixed Additives on the Anatase – Rutile Phase Transformation, Mater. Letters, 36: 320-324
  7. Guidi, V., Carotta, M. C., Ferroni, M., Martinelli, G., Sacerdoti, M. (2003). Effect of Dopants on Grain Coalescence and Oxygen Mobility in Nanostructured Titania Anatase and Rutile, J Phys. Chem. B, 107: 120-124
  8. Sunajadevi, K. R., Sugunan, S. (2004). Synthesis, characterization and benzylation activity of nanocrystalline chromia loaded sulfated titania prepared via the sol gel route, Catal. Commun., 5: 575-581
  9. Francisco, M. S. P., Mastelaro, V. R. (2002). Inhibition of the Anatase-Rutile Phase Transformation with Addition of CeO2 to CuO-TiO2 System: Raman Spectroscopy, X-ray Diffraction, and Textural Studies, Chem. Mater, 14: 2514-2518
  10. Shannon, R. D., Pask, J. A. (1965). Kinetics of the Anatase-Rutile Transformation, J Am. Ceram. Soc, 48: 391-398
  11. Sanchez, E., Lopez, T., Gomez, R., Bokhimi, X., Morales, A., Novaro, O. (1996). Synthesis and Characterization of Sol-Gel Pt/TiO2, J. Solid State Chem, 122: 309-314
  12. Ranjit, K.T., Willner, I., Bossmann, S. H., Braun, A. M. (2001). Lanthanide Oxide-Doped Titanium Dioxide Photocatalysts: Novel Photocatalysts for the Enhanced Degradation of p-Chlorophenoxyacetic Acid, Environ Sci. Technol, 35: 1544-1549
  13. Zhang, Y., Xu, H., Xu, Y., Zhang, H., Wang Y. (2005). The effect of lanthanide on the degradation of RB in nanocrystalline Ln/TiO2 aqueous solution, J. Photochem. Photobiol. A Chem., 170: 279-285
  14. Zhang, Y. H., Zhang, H. X., Zu, Y. X., Wang Y. G. (2003). Europium doped nanocrystalline titanium dioxide: preparation, phase transformation and photocatalytic properties, J. Mater. Chem., 13: 2261-2265
  15. Huang, D. W., Lee, J. S., Li, W., Oh, S. H. (2003). Electronic Band Structure and Photocatalytic Activity of Ln2Ti2O7 (Ln = La, Pr, Nd), J. Phys. Chem. B, 107: 4963-4970
  16. Lin, J., Yu J. C. (1998). An investigation on photocatalytic activities of mixed TiO2-rare earth oxides for the oxidation of acetone in air, J. Photochem. Photobiol. A Chem., 116: 63-67
  17. Xu, A. W., Gao, Y., Liu, H. Q. (2002). The Preparation, Characterization, and their Photocatalytic Activities of Rare-Earth-Doped TiO2 Nanoparticles , J. Catal., 207: 151-157
  18. Xie, Y., Yuan, C., Li, X. (2005). Photocatalytic degradation of X-3B dye by visible light using lanthanide ion modified titanium dioxide hydrosol system, Colloid Surf. A Physicochem. Eng. Asp., 252: 87-94
  19. Xie, Y., Yuan, C., Li, X. (2005). Photosensitized and photocatalyzed degradation of azo dye using Lnn+-TiO2 sol in aqueous solution under visible light irradiation, Mater. Sci. Eng. B, 117: 325-333
  20. Sun, B., Sminiorstis, P. G., Boolchand, P. (2005). Synthesis, characterization and photocatalytic activity of Li-, Cd-, and La-doped TiO2, Langmuir, 211: 11397-11403
  21. Gomathi Devi, L., Nagaraju, K., Girish Kumar S. (2009). Preparation and Characterization of Mn-Doped Titanates with a Bicrystalline Framework: Correlation of the Crystallite Size with the Synergistic Effect on the Photocatalytic Activity , J. Phys. Chem. C., 113: 15593-15601
  22. Radhika, R. N., Arulraj, J., Sunaja Devi, K. R. (2016 Ceria doped titania Nano particles: Synthesis and Photo Catalytic Activity, Mat. Today. Proc., 6 (3): 1643-1649
  23. Spurr, R., Myers W. (1957). Quantitative Analysis of Anatase-Rutile Mixtures with an X-Ray Diffractometer, Anal. Chem., 29: 760-762
  24. Scherrer, P. (1918). Bestimmung der Gröss Kolloidteilchen Mittels hrichten von der Gesellschaft der Wissenschaften, Göttingen, Mathematisch-Physikalische Klasse, 2: 98-100
  25. Elsellami, L., Lachheb, H., Houas A. (2015). Synthesis, characterization and photocatalytic activity of Li-, Cd-, and La-doped TiO2, Mater. Sci. Semicondu. Proce., 36: 103-114
  26. Kubelka, P., Munk F. (1931). Photocatalysis: fundamentals and applications, Tech. Phys., 12: 593-601
  27. Borgarello, E., Kiwi, J., Gratzel, M., Pelizzetti, E., Visca M. (1982). Visible light induced water cleavage in colloidal solutions of chromium-doped titanium dioxide particles, J Ameri. Chem. Soc., 104: 2996-3002
  28. Huo, Y., Zhu, J., Li, J., Li, G., Li, H. (2007). An active La/TiO2 photocatalyst prepared by ultrasonication-assisted sol–gel method followed by treatment under supercritical conditions, J. Mol Catal A Chem., 278: 237-243
  29. Hurum, D. C., Agrios, A. G., Gray, K. A., Rajh, T., Thurnauer M. C. (2003). Explaining the Enhanced Photocatalytic Activity of Degussa P25 Mixed-Phase TiO2 Using EPR, J. Phys. Chem. B, 107: 4545-4549
  30. Hassan, M.S, Amna T., Yang O B., Kim H.C., Khil M.S. (2012). TiO2 nanofibers doped with rare earth elements and their photocatalytic activity, Ceramics International, 38: 5925-5930
  31. Poh, N.E., Nur, H., Muhid, M.N.M., Hamdan, H. (2006). Sulphated AlMCM-41: Mesoporous solid Brønsted acid catalyst for dibenzoylation of biphenyl. Catal. Today. 114(2-3): 257-262
  32. Leofanti, G., Padovan, M., Tozzola, G., Venturelli, B. (1998). Surface area and pore texture of catalysts. Catal. Today, 41(1-3): 207-219
  33. Walker, J. (1986). Coal derived carbons. Carbon, 24(4): 379-386

Last update:

No citation recorded.

Last update:

No citation recorded.