Enhanced Photocatalytic Activity of La3+ doped Bicrystalline Titania Prepared via Combustion method for the Degradation of Cationic dye Under Solar Illumination

DOI: https://doi.org/10.9767/bcrec.13.1.1427.119-126
Copyright (c) 2018 Bulletin of Chemical Reaction Engineering & Catalysis
License URL: https://creativecommons.org/licenses/by-sa/4.0
Cover Image

Article Metrics: (Click on the Metric tab below to see the detail)

Article Info
Submitted: 28-07-2017
Published: 02-04-2018
Section: Original Research Articles
Fulltext PDF Tell your colleagues Email the author

La3+ doped TiO2 photocatalysts were successfully synthesized by combustion method in the presence of urea and were characterized by various physico-chemical techniques. Further, the photocatalytic performance of the synthesized catalysts was monitored by photocatalytic degradation of synthetic cationic dye-Methylene Blue (MB) under solar illumination. The bicrystalline phase of anatase and rutile was confirmed by X-ray diffraction analysis. Moreover, the transformation from anatase to rutile phase proceeds at a slower rate in the La3+ doped TiO2 catalysts. Effective separation of charge carriers, a synergistic effect in the bicrystalline framework of anatase and rutile, smaller crystallite size, and higher concentration of surface adsorbed hydroxyl groups helped these catalysts to show improved activity for the dye degradation. Copyright © 2018 BCREC Group. All rights reserved

Received: 28th July 2017; Revised: 19th October 2017; Accepted: 30th October 2017; Available online: 22nd January 2018; Published regularly: 2nd April 2018

How to Cite: Nair, R.R., Mohan, M.K., Sunajadevi, K.R. (2018). Enhanced Photocatalytic Activity of La3+ doped Bicrystalline Titania Prepared via Combustion method for the Degradation of Cationic dye Under Solar Illumination. Bulletin of Chemical Reaction Engineering & Catalysis, 13 (1): 119-126 (doi:10.9767/bcrec.13.1.1427.119-126)



Titania, La3+ doped titania; combustion synthesis; photocatalysis; degradation of cationic dye.

  1. Radhika R Nair 
    Department of Chemistry, Christ University, Bangalore-560029, Karnataka, India
  2. Mothi Krishna Mohan 
    Department of Sciences & Humanities, Christ University, Bangalore-560074, Karnataka, India
  3. Sunaja Devi 
    Department of Chemistry, Christ University, Bangalore-560029, Karnataka, India
  1. Mills, A., Le, Hunte S. (1997). An overview of semiconductor photocatalysis, J. Photochem. Photobio. A: Chem., 108: 1-35.
  2. Fox, M. A., Dulay, M. T. (1993). Heterogeneous Photocatalysis, Chem. Rev., 93: 341-357.
  3. Wang, Z., Liu, X., Li, W., Wang, H., Li, H. (2014). Enhancing the photocatalytic degradation of salicylic acid by using molecular imprinted S-doped TiO2 under simulated solar light, Ceramics International, 40: 8863-8867.
  4. Zhang, Y., Cheng, K., Lv, F., Huang, H., Fei, B., He, Y., Ye, Z., Shen, B. (2014). Photocatalytic treatment of 2,4,6-trinitotoluene in red water by multi-doped TiO2 with enhanced visible light photocatalytic activity, Colloids Surf. A Physicochem. Eng. Asp, 452: 103-108.
  5. Lin, Y. T., Weng, C. H., Chen, F. Y. (2014). Key operating parameters affecting photocatalytic activity of visible-light-induced C-doped TiO2 catalyst for ethylene oxidation, Chem. Eng. J., 248: 175-183.
  6. Yang, Y., Ferreira, J. M. F. (1998). Inhibitory Effect of the Al2O3 – SiO2 Mixed Additives on the Anatase – Rutile Phase Transformation, Mater. Letters, 36: 320-324.
  7. Guidi, V., Carotta, M. C., Ferroni, M., Martinelli, G., Sacerdoti, M. (2003). Effect of Dopants on Grain Coalescence and Oxygen Mobility in Nanostructured Titania Anatase and Rutile, J Phys. Chem. B, 107: 120-124.
  8. Sunajadevi, K. R., Sugunan, S. (2004). Synthesis, characterization and benzylation activity of nanocrystalline chromia loaded sulfated titania prepared via the sol gel route, Catal. Commun., 5: 575-581.
  9. Francisco, M. S. P., Mastelaro, V. R. (2002). Inhibition of the Anatase-Rutile Phase Transformation with Addition of CeO2 to CuO-TiO2 System: Raman Spectroscopy, X-ray Diffraction, and Textural Studies, Chem. Mater, 14: 2514-2518.
  10. Shannon, R. D., Pask, J. A. (1965). Kinetics of the Anatase-Rutile Transformation, J Am. Ceram. Soc, 48: 391-398.
  11. Sanchez, E., Lopez, T., Gomez, R., Bokhimi, X., Morales, A., Novaro, O. (1996). Synthesis and Characterization of Sol-Gel Pt/TiO2, J. Solid State Chem, 122: 309-314.
  12. Ranjit, K.T., Willner, I., Bossmann, S. H., Braun, A. M. (2001). Lanthanide Oxide-Doped Titanium Dioxide Photocatalysts: Novel Photocatalysts for the Enhanced Degradation of p-Chlorophenoxyacetic Acid, Environ Sci. Technol, 35: 1544-1549.
  13. Zhang, Y., Xu, H., Xu, Y., Zhang, H., Wang Y. (2005). The effect of lanthanide on the degradation of RB in nanocrystalline Ln/TiO2 aqueous solution, J. Photochem. Photobiol. A Chem., 170: 279-285.
  14. Zhang, Y. H., Zhang, H. X., Zu, Y. X., Wang Y. G. (2003). Europium doped nanocrystalline titanium dioxide: preparation, phase transformation and photocatalytic properties, J. Mater. Chem., 13: 2261-2265.
  15. Huang, D. W., Lee, J. S., Li, W., Oh, S. H. (2003). Electronic Band Structure and Photocatalytic Activity of Ln2Ti2O7 (Ln = La, Pr, Nd), J. Phys. Chem. B, 107: 4963-4970.
  16. Lin, J., Yu J. C. (1998). An investigation on photocatalytic activities of mixed TiO2-rare earth oxides for the oxidation of acetone in air, J. Photochem. Photobiol. A Chem., 116: 63-67.
  17. Xu, A. W., Gao, Y., Liu, H. Q. (2002). The Preparation, Characterization, and their Photocatalytic Activities of Rare-Earth-Doped TiO2 Nanoparticles , J. Catal., 207: 151-157.
  18. Xie, Y., Yuan, C., Li, X. (2005). Photocatalytic degradation of X-3B dye by visible light using lanthanide ion modified titanium dioxide hydrosol system, Colloid Surf. A Physicochem. Eng. Asp., 252: 87-94.
  19. Xie, Y., Yuan, C., Li, X. (2005). Photosensitized and photocatalyzed degradation of azo dye using Lnn+-TiO2 sol in aqueous solution under visible light irradiation, Mater. Sci. Eng. B, 117: 325-333.
  20. Sun, B., Sminiorstis, P. G., Boolchand, P. (2005). Synthesis, characterization and photocatalytic activity of Li-, Cd-, and La-doped TiO2, Langmuir, 211: 11397-11403.
  21. Gomathi Devi, L., Nagaraju, K., Girish Kumar S. (2009). Preparation and Characterization of Mn-Doped Titanates with a Bicrystalline Framework: Correlation of the Crystallite Size with the Synergistic Effect on the Photocatalytic Activity , J. Phys. Chem. C., 113: 15593-15601.
  22. Radhika, R. N., Arulraj, J., Sunaja Devi, K. R. (2016 Ceria doped titania Nano particles: Synthesis and Photo Catalytic Activity, Mat. Today. Proc., 6 (3): 1643-1649.
  23. Spurr, R., Myers W. (1957). Quantitative Analysis of Anatase-Rutile Mixtures with an X-Ray Diffractometer, Anal. Chem., 29: 760-762.
  24. Scherrer, P. (1918). Bestimmung der Gröss Kolloidteilchen Mittels hrichten von der Gesellschaft der Wissenschaften, Göttingen, Mathematisch-Physikalische Klasse, 2: 98-100.
  25. Elsellami, L., Lachheb, H., Houas A. (2015). Synthesis, characterization and photocatalytic activity of Li-, Cd-, and La-doped TiO2, Mater. Sci. Semicondu. Proce., 36: 103-114.
  26. Kubelka, P., Munk F. (1931). Photocatalysis: fundamentals and applications, Tech. Phys., 12: 593-601.
  27. Borgarello, E., Kiwi, J., Gratzel, M., Pelizzetti, E., Visca M. (1982). Visible light induced water cleavage in colloidal solutions of chromium-doped titanium dioxide particles, J Ameri. Chem. Soc., 104: 2996-3002.
  28. Huo, Y., Zhu, J., Li, J., Li, G., Li, H. (2007). An active La/TiO2 photocatalyst prepared by ultrasonication-assisted sol–gel method followed by treatment under supercritical conditions, J. Mol Catal A Chem., 278: 237-243.
  29. Hurum, D. C., Agrios, A. G., Gray, K. A., Rajh, T., Thurnauer M. C. (2003). Explaining the Enhanced Photocatalytic Activity of Degussa P25 Mixed-Phase TiO2 Using EPR, J. Phys. Chem. B, 107: 4545-4549.
  30. Hassan, M.S, Amna T., Yang O B., Kim H.C., Khil M.S. (2012). TiO2 nanofibers doped with rare earth elements and their photocatalytic activity, Ceramics International, 38: 5925-5930.
  31. Poh, N.E., Nur, H., Muhid, M.N.M., Hamdan, H. (2006). Sulphated AlMCM-41: Mesoporous solid Brønsted acid catalyst for dibenzoylation of biphenyl. Catal. Today. 114(2-3): 257-262.
  32. Leofanti, G., Padovan, M., Tozzola, G., Venturelli, B. (1998). Surface area and pore texture of catalysts. Catal. Today, 41(1-3): 207-219.
  33. Walker, J. (1986). Coal derived carbons. Carbon, 24(4): 379-386.