skip to main content

Photooxidation and Virus Inactivation using TiO2(P25)–SiO2 Coated PET Film

1Department of Sustainable Industrial Management Engineering, Faculty of Engineering, Rajamangala University of Technology Phra Nakhon, Bangkok 10800, Thailand

2Department of Industrial Chemistry, Faculty of Applied Science, King Mongkut’s University of Technology of North Bangkok, Bangkok 10800, Thailand

3Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand

4 Department of Pharmaceutics and Industrial Pharmacy and Research Unit for Plant-produced Pharmaceuticals, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand

5 Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand

6 Performance Computing Unit (CECC-HCU), Center of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok 10330, Thailand

View all affiliations
Received: 6 May 2022; Revised: 22 Jun 2022; Accepted: 23 Jun 2022; Available online: 4 Jul 2022; Published: 30 Sep 2022.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2022 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image

This study chemically modified PET film surface with P25 using silicate as a binder. Different P25–binder ratios were optimized for the catalyst performance. The modified samples were analyzed by scanning electron microscopy-energy-dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy. Diffuse reflectance UV-vis spectra revealed significant reductions in the band gaps of the P25 solid precursor (3.20 eV) and the surface-modified PET–1.0Si–P25 (2.77 eV) with visible light. Accordingly, under visible light conditions, catalyst activity on the film will occur. Additionally, the film’s performance was evaluated using methylene blue (MB) degradation. Pseudo-first-order-rate constants (min1), conversion percentages, and rates (µg.mL1.gcat1.h1) were determined. The coated films were evaluated for viral Phi–X 174 inactivation and tested with fluorescence and UV-C light illumination, then log (N/N0) versus t plots (N = [virus] in plaque-forming units [PFUs]/mL) were obtained. The presence of nanosilica in PET showed a high adsorption ability in both MB and Phi–X 174, whereas the best performances with fluorescent light were obtained from PET–1.0Si–P25 and PET–P25–1.0Si–SiO2 equally. A 0.2-log virus reduction was obtained after 3 h at a rate of 4×106 PFU.mL1.gcat1.min1. Additionally, the use of this film for preventing transmission by direct contact with surfaces and via indoor air was considered. Using UV light, the PET–1.0Si–P25 and PET–1.0Si–P25–SiO2 samples produced a 2.5-log inactivation after 6.5 min at a rate of 9.6×106 and 8.9×106 PFU.mL1.gcat1.min1, respectively. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (


Fulltext View|Download
Keywords: Photooxidation; virus inactivation; PET film; P25 titania; P25-silica
Funding: National Research Council of Thailand (NRCT)

Article Metrics:

  1. Linsebigler, A., Lu, G., Yates J. (1995). Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chemical Reviews, 95(3), 735–758. DOI: 10.1021/cr00035a013
  2. Schneider, J., Matsuoka, M., Takeuchi, M., Zhang, J., Horiuchi, Y., Anpo, M., Bahnemann, D. (2014). Understanding TiO2 photocatalysis: mechanisms and materials. Chemical Reviews, 114(19), 9919–9986. DOI: 10.1021/cr5001892
  3. Ollis, D. (2018). Kinetics of photocatalyzed reactions: Five lessons learned. Frontiers in Chemistry, 6, 378. DOI: 10.3389/fchem.2018.00378
  4. Zheng, X., Shen, Z., Cheng, C., Shi, L., Cheng, R., Yuan, D. (2018). Photocatalytic disinfection performance in virus and virus/bacteria system by Cu-TiO2 nanofibers under visible light. Environmental Pollution, 237, 452–459. DOI: 10.1016/j.envpol.2018.02.074
  5. Jafry, H., Liga, M., Li, Q., Barron, A. (2011). Simple route to enhanced photocatalytic activity of P25 titanium dioxide nanoparticles by silica addition. Environmental Science & Technology, 45(4), 1563–1568. DOI: 10.1021/es102749e
  6. Habibi, A., Asadzadeh, S., Feizpoor, S., Rouhi, A. (2020). Review on heterogeneous photocatalytic disinfection of waterborne, airborne, and foodborne viruses: Can we win against pathogenic viruses?. Journal of Colloid and Interface Science, 580, 503–514. DOI: 10.1016/j.jcis.2020.07.047
  7. Ditta, I.B., Steele, A., Liptrot, C., Tobin, J., Tyler, H., Yates, H., Sheel, D., Foster, H. (2008). Photocatalytic antimicrobial activity of thin surface films of TiO2, CuO and TiO2/CuO dual layers on Escherichia coli and bacteriophage T4. Applied Microbiology and Biotechnology, 79, 127–133. DOI: 10.1007/s00253-008-1411-8
  8. Akhavan, O., Choobtashani, M., Ghaderi, E. (2012). Protein degradation and RNA efflux of viruses photocatalyzed by graphene–tungsten oxide composite under visible light irradiation. The Journal of Physical Chemistry C, 116(17), 9653–9659. DOI: 10.1021/jp301707m
  9. Nasralla, N., Yeganeh, M., Astuti, Y., Piticharoenphun, S., Šiller, L. (2018). Systematic study of electronic properties of Fe-doped TiO2 nanoparticles by X-ray photoemission spectroscopy. Journal of Materials Science: Materials in Electronics, 29, 17956–17966. DOI: 10.1007/s10854-018-9911-5
  10. Nasralla, N., Yeganeh, M., Astuti, Y., Piticharoenphun, S., Shahtahmasebi, N., Kompany, A., Karimipour, M., Mendis, B.G., Poolton, N.R.J., Šiller, L. (2013). Structural and spectroscopic study of Fe-doped TiO2 nanoparticles prepared by sol–gel method. Scientia Iranica, 20, 1018–1022. DOI: 10.1016/j.scient.2013.05.017
  11. Yao, N., Yeung, K. (2011). Investigation of the performance of TiO2 photocatalytic coatings. Chemical Engineering Journal, 167, 13–21. DOI: 10.1016/j.cej.2010.11.061
  12. Dutschke, A., Diegelmann, C., Löbmann, P. (2003). Preparation of TiO2 thin films on polystyrene by liquid phase deposition. Journal of Materials Chemistry, 13, 1058–1063. DOI: 10.1039/B212535H
  13. Essawy, A., Ali, A., Abdel-Mottaleb, M. (2008). Application of novel copolymer-TiO2 membranes for some textile dyes adsorptive removal from aqueous solution and photocatalytic decolorization. Journal of Hazardous Materials, 157(2-3), 547–552. DOI: 10.1016/j.jhazmat.2008.01.072
  14. Lu, S., Sun, S., Niu, J., Zeng, L., Liu, H., Zhao, X. (2012). Poly (thienylene methine) grafted nanocrystalline TiO2 based hybrid solar cells. Journal of Materials Science: Materials in Electronics, 23, 251–256. DOI: 10.1007/s10854-011-0397-7
  15. Mesnage, A., Magied, M., Simon, P., Herlin-Boime, N., Jégou, P., Deniau, G., Palacin, S. (2011). Grafting polymers to titania nanoparticles by radical polymerization initiated by diazonium salt. Journal of Materials Science, 46, 6332–6338. DOI: 10.1007/s10853-011-5709-z
  16. Tchoul, M., Fillery, S., Koerner, H., Drummy, L., Oyerokun, F., Mirau, P., Durstock, M., Vaia, R. (2010). Assemblies of titanium dioxide-polystyrene hybrid nanoparticles for dielectric applications. Chemistry of Materials, 22(5), 1749–1759. DOI: 10.1021/cm903182n
  17. Ye, C., Li, H., Cai, A., Gao, Q., Zeng, X. (2011). Preparation and characterization of organic nano-titanium dioxide/acrylate composite emulsions by in-situ emulsion polymerization. Journal of Macromolecular Science, Part A, 48(4), 309–314. DOI: 10.1080/10601325.2011.552353
  18. Klaysri, R., Wichaidit, S., Piticharoenphun, S., Mekasuwandumrong, O., Praserthdam, P. (2016). Synthesis of TiO2-grafted onto PMMA film via ATRP: Using monomer as a coupling agent and reusability in photocatalytic application. Materials Research Bulletin, 83, 640–648. DOI: 10.1016/j.materresbull.2016.07.019
  19. Marcelino, R., Amorim, C., Ratova, M., Delfour-Peyrethon, B., Kelly, P. (2019). Novel and versatile TiO2 thin films on PET for photocatalytic removal of contaminants of emerging concern from water. Chemical Engineering Journal, 370, 1251–1261. DOI: 10.1016/j.cej.2019.03.284
  20. Izumi, I., Hiroyuki, S., Toyoki, K. (1996). Stepwise adsorption of metal alkoxides on hydrolyzed surfaces: A surface sol-gel process. Chemistry Letters, 25, 831–832. DOI: 10.1246/cl.1996.831
  21. Nowacka, M., Ambrożewicz, D., Jesionowski, T. (2013). TiO2-SiO2/Ph-POSS functional hybrids: Preparation and characterisation. Journal of Nanomaterials, 2013, 680821. DOI: 10.1155/2013/680821
  22. Cho, M., Chung, H., Choi, W., Yoon, J. (2004). Linear correlation between inactivation of E. coli and OH radical concentration in TiO2 photocatalytic disinfection. Water Research, 38(4), 1069–1077. DOI: 10.1016/j.watres.2003.10.029
  23. Cushnie, T., Robertson, P., Officer, S., Pollard, P., Prabhu, R., Mccullagh, C., Robertson, J. (2010). Photobactericidal effects of TiO2 thin films at low temperatures—A preliminary study. Journal of Photochemistry and Photobiology A: Chemistry, 216(2-3), 290-294. DOI: 10.1016/j.jphotochem.2010.06.027
  24. Choi, S., Cho, B. (2018). Extermination of influenza virus H1N1 by a new visible-light-induced photocatalyst under fluorescent light. Virus Research, 248, 71–73. DOI: 10.1016/j.virusres.2018.02.011
  25. Kiwi, J., Nadtochenko, V. (2004). New evidence for TiO2 photocatalysis during bilayer lipid peroxidation. The Journal of Physical Chemistry B, 108(45), 17675–17684. DOI: 10.1021/jp048281a
  26. Bogdan, J., Zarzyńska, J., Pławińska-Czarnak, J. (2015). Comparison of infectious agents susceptibility to photocatalytic effects of nanosized titanium and zinc oxides: a practical approach. Nanoscale Research Letters, 10, 309. DOI: 10.1186/s11671-015-1023-z
  27. Tsubone, T., Baptista, M., Itri, R. (2019). Understanding membrane remodelling initiated by photosensitized lipid oxidation. Biophysical Chemistry, 254, 106263. DOI: 10.1016/j.bpc.2019.106263
  28. Ciceri, F., Beretta, L., Scandroglio, A., Colombo, S., Landoni, G., Ruggeri, A., Peccatori, J., D'Angelo, A., Cobelli, F., Rovere-Querini, P., Tresoldi, M., Dagna, L., Zangrillo, A. (2020). Microvascular COVID-19 lung vessels obstructive thromboinflammatory syndrome (MicroCLOTS): an atypical acute respiratory distress syndrome working hypothesis. Critical Care and Resuscitation, 22(2), 95–97
  29. Cui, J., Li, F., Shi, Z. (2019). Origin and evolution of pathogenic coronaviruses. Nature Reviews Microbiology, 17, 181–192. DOI: 10.1038/s41579-018-0118-9
  30. Krammer, F. (2020). SARS-CoV-2 vaccines in development. Nature, 586, 516–527. DOI: 10.1038/s41586-020-2798-3
  31. Zhou, Z., Li, B., Liu, X., Li, Z., Zhu, S., Liang, Y., Cui, Z., Wu, S. (2021). Recent progress in photocatalytic antibacterial. ACS Applied Bio Materials, 4(5), 3909–3936. DOI: 10.1021/acsabm.0c01335

Last update:

No citation recorded.

Last update:

No citation recorded.