skip to main content

Experimental and Kinetic Modeling of Galactose Valorization to Levulinic Acid

1Chemical Engineering Department, Faculty of Industrial Engineering, UPN Veteran Yogyakarta, Jalan SWK 104 (Lingkar Utara), Condongcatur, Yogyakarta , Indonesia

2Chemical Engineering Department, Faculty of Engineering, Universitas Gadjah Mada, Jalan Grafika 2, Kampus UGM, Yogyakarta, Indonesia

3Chemical Engineering Department, Faculty of Engineering, Universitas Gadjah Mada, Jalan Grafika 2, Kampus UGM, Yogyakarta , Indonesia

4 Center of Excellence for Microalgae Biorefinery, Universitas Gadjah Mada, Jalan Sekip K1A, Kampus UGM, Yogyakarta, Indonesia

View all affiliations
Received: 8 Apr 2022; Revised: 23 May 2022; Accepted: 24 May 2022; Available online: 26 May 2022; Published: 30 Jun 2022.
Editor(s): Bunjerd Jongsomjit
Open Access Copyright (c) 2022 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image

Levulinic acid, a versatile chemical building block, was derived from C6-sugar galactose using sulfuric acid as the catalyst. Galactose is monosaccharide of polysaccharides constituent that is mostly contained in third generation biomass, macro-microalgae. It currently receives high attention to be a source of renewable feedstock. The effect of temperature, catalyst concentration and initial substrate loadings were studied for 60 min, in the temperature range of 150–190 °C, acid concentration of 0.25–0.75 M and initial substrate loading of 0.05–0.25 M. The highest levulinic acid yield of 40.08 wt% was achieved under the following conditions: 0.05 M galactose, 0.75 M acid concentration, 170 °C temperature, and 40 min reaction time. The kinetic model was developed by first order pseudo-irreversible reaction. The results showed that the proposed model could capture the experimental data well. These results suggested that galactose, derived from macro- and micro-algae, can potentially be converted and applied for platform chemicals. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (


Fulltext View|Download
Keywords: C6-Sugar; Galactose; Levulinic Acid; Kinetics; Valorization
Funding: Ministry of Research and Technology/National Research and Innovation Agency (RISTEK-BRIN), Republic of Indonesia ; Ministry of Financial, Republic of Indonesia under contract BUDI LPDP scholarship

Article Metrics:

  1. Meinita, M.D.N., Amron, A., Trianto, A., Harwanto, D., Caesarendra, W., Jeong, G.T., Choi, J.S. (2021). Review: Levulinic acid production from macroalgae: Production and promishing potential in Industry”. Sustainability, 13, 13919. DOI: 10.3390/su132413919
  2. Jamilatun, S., Suhendra, S., Budhijanto, B., Rochmadi, R., Taufikurahman, T., Yuliestyan, A., Budiman, A. (2020). Catalytic and non−catalytic pyrolysis of Spirulina platensis residue (SPR): Effects of temperature and catalyst content on bio-oil yields and its composition. AIP Conference Proceedings, 2248, 060003. DOI: 10.1063/5.0013164
  3. Jeong, G.T., Kim, S.K. (2021). Thermochemical conversion of defatted microalgae Scenedesmus obliquus into levulinic and formic acids. Fuel, 283, 118907. DOI: 10.1016/j.fuel.2020.118907
  4. Listyaningrum, N.B., Azis, M.M., Sarto, Rosdi, A.N., sHarun, M.R. (2021). Kinetic Study of Subcritical Water Extraction of Carbohydrates from Microalgae Nannochloropsis sp. ASEAN Journal of Chemical Engineering, 21(1), 11-18. DOI: 10.22146/ajche.60015
  5. Ringgani, R., Azis, M.M., Rochmadi, R., Budiman, A. (2022). Kinetic study of levulinic acid from spirulina platensis residue. Applied Biochemistry and Biotechnology, 194, 2684–2699. DOI: 10.1007/s12010-022-03806-x
  6. Signoretto, M., Taghavi, S., Ghedini, E., Menegazzo, F. (2019). Catalytic Production of Levulinic Acid (LA) from Actual Biomass. Molecules, 24(15), 2760. DOI: 10.3390/molecules24152760
  7. Toif, M.E., Hidayat, M., Rochmadi, R., Budiman, A. (Article In Press). Heterogeneous Reaction Model for Evaluating the Kinetics of Levulinic Acid Synthesis from Pretreated Sugarcane Bagasse. International Journal of Technology
  8. Mthembu, L.D., Lokhat, D., Deenadayalu, N. (2021). Esterification of levulinic acid to ethyl levulinate: optimization of process conditions using commercial levulinic acid and extension to the use of levulinic acid derived from depithed sugarcane bagasse. Biomass Conversion and Biorefinery, DOI: 10.1007/s13399-021-01632-5
  9. Huang, X., Liu, K., Vrijbur, W.L., Ouyang, X., Dugulan, A.I., Liu, Y., Verhoeven, M.W.G.M.T., Kosinov, N.A., Pidko, E.A., Hensen, E.J.M. (2020). Hydrogenation of Levulinic Acid to g-Valerolactone over Fe-Re/TiO2 Catalysts. Applied Catalysis B: Environmental, 278, 119314. DOI: 10.1016/j.apcatb.2020.119314
  10. Kawasumi, R., Narita, S., Miyamoto, K., Tominaga, K., Takita, R., Uchiyama, M. (2017). One-step conversion of levulinic acid to succinic acid using I2/t-BuOK System: The Iodoform Reaction Revisited. Scientific Report, 7, 17967. DOI: 10.1038/s41598-017-17116-4
  11. Xie, Z., Chen, B., Wu, H., Liu, M., Liu, H., Zhang, J., Yang, G., Han, B. (2019). Highly efficient hydrogenation of levulinic acid into 2-methyltetrahydrofuran over Ni–Cu/Al2O3–ZrO2 bifunctional catalysts. Green Chemistry, 21, 606-613. DOI: 10.1039/c8gc02914h
  12. Ha, H., Lee, S., Ha, Y., Park, J. (1994). An International Journal for Rapid Communication of Synthetic Organic Chemistry Selective Bromination of Ketones. A Convenient Synthesis of 5-Aminolevulinic Acid. Synthetic Communications, 24(18), 2557–2562. DOI: 10.1080/00397919408010567
  13. Morone, A., Apte, M., Pandey, R.A. (2015). Review: Levulinic acid production from renewable waste resources: Bottlenecks, potential remedies, advancements and applications. Renewable and Sustainable Energy Reviews, 51, 548-565. DOI: 10.1016/j.rser.2015.06.032
  14. Antonetti, C., Licurci, D., Fulignati, S., Valentini, G., Galetti, A.M.R. (2016). Review: New Frontiers in the Catalytic Synthesis of Levulinic Acid: From Sugars to Raw and Waste Biomass as Starting Feedstock. Catalysts, 6, 196. DOI: 10.3390/catal6120196
  15. Son, P.A., Nishimura, S., Ebitani, K. (2012). Synthesis of levulinic acid from fructose using Amberlyst-15 as a solid acid catalyst. Reaction Kinetics, Mechanisms and Catalysis, 106, 185-192. DOI: 10.1007/s11144-012-0429-1
  16. Girisuta, B., Janssen, L.P.B.M., Heeres, H.J. (2006). Green chemicals: A kinetic study on the conversion of glucose to levulinic acid. Chemical Engineering Research and Design, 84, 339-349. DOI: 10.1205/cherd05038
  17. Shi, N., Liu, Q., Cen, H., Ju, R., He, X., Ma, L. (2019). Formation of humins during degradation of arbohydrates and furfural derivatives in various solvents. Biomass Conversion and Biorefinery, 10, 277–287. DOI: 10.1007/s13399-019-00414-4
  18. Ahlkvist, J. (2014). Formic & Levulinic Acid from Cellulose via Heterogeneous Catalysis. PhD Thesis. Umeå: Umeå universitet, Sweden, ISBN: 978-91-7459-798-1
  19. Yu, I.K.M., Tsang, D.C.W. (2017). Conversion of biomass to hydroxymethylfurfural: A review of catalytic systems and underlying mechanisms. Bioresource Technology, 238, 716-732. DOI: 10.1016/j.biortech.2017.04.026
  20. Weiqi, W., Shubin, W. (2018). Experimental and kinetic study of glucose conversion to levulinic acid in aqueous medium over Cr/HZSM-5 catalyst. Fuel, 225, 311-321. DOI: 10.1016/j.fuel.2018.03.120
  21. Hu, X., Wu, L., Wang, Y., Song, Y., Mourant, D., Gunawan, R., Gholizadeh, M., Zhu Li, C. (2013). Acid-catalyzed conversion of mono- and poly-sugars into platform chemicals: Effects of molecular structure of sugar substrate. Bioresource Technology, 133, 469–474. DOI: 10.1016/j.biortech.2013.01.080
  22. Kang, M., Kim, S.W., Kim, J.W., Kim, T.H., Kim, J.S. (2013). Optimization of levulinic acid production from Gelidium amansii. Renewable Energy, 54, 173-180. DOI: 10.1016/j.renene.2012.08.028
  23. Park, M.R., Kim, S.K., Taek Jeong, G.T. (2018). Optimization of the levulinic acid production from the red macroalga, Gracilaria verrucosa using methanesulfonic acid. Algal Research, 31, 116-122. DOI: 10.1016/j.algal.2018.02.004
  24. Jeong, G.T., Ra, C.H., Hong, Y.K., Kim, J.K., Kong, I.S., Kim, S.K., Park, D.H. (2015). Conversion of red-algae Gracilaria verrucosa to sugars, levulinic acid and 5-hydroxymethylfurfural. Bioprocess and Biosystems Engineering, 38, 207–218. DOI: 10.1007/s00449-014-1259-5
  25. Wang, B., Liu, Q., Huang, Y., Yuan, Y., Ma, Q., Du, M., Cai, T., Cai, Y. (2018). Extraction of Polysaccharide from Spirulina and Evaluation of Its Activities. Hindawi Evidence-Based Complementary and Alternative Medicine, 2018, 3425615 . DOI: 10.1155/2018/3425615
  26. Chaiklahan, R., Chirasuwan, N., Triratana, P., Loha, V., Tia, S., Bunnag, B. (2013). Polysaccharide extraction from Spirulina sp. and its antioxidant capacity. International Journal of Biological Macromolecules, 58, 73–78. DOI: 10.1016/j.ijbiomac.2013.03.046
  27. Weingarten, R., Cho, J., Xing, R., Conner Jr, W.C., Huber, G.W. (2012). Kinetics and Reaction Engineering of Levulinic Acid Production from Aqueous Glucose Solutions. ChemSusChem, 5(7), 1280-1290. DOI: 10.1002/cssc.201100717
  28. Asghari, F.S., Yoshida, H. (2007). Kinetics of the Decomposition of Fructose Catalyzed by Hydrochloric Acid in Subcritical Water: Formation of 5-Hydroxymethylfurfural, Levulinic, and Formic Acids. Industrial & Engineering Chemistry Research, 46, 7703-7710. DOI: 10.1021/ie061673e
  29. Fachri, B.A., Abdilla, R., Bovenkamp, H., Rasrendra, C., Heeres, H.J. (2016). Experimental and Kinetic Modeling Studies on the Sulphuric Acid Catalyzed Conversion of D-Fructose to 5-Hydroxymethylfurfural and Levulinic acid in Water. ACS Sustainable Chemistry Engineering, 3(12), 3024–3034. DOI: 10.1021/acssuschemeng.5b00023
  30. Toif, M.E., Hidayat, M., Rochmadi, R., Budiman, A. (2021). Reaction Kinetics of Levulinic Acid Synthesis from Glucose Using Brønsted Acid Catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 16(4), 904-915. DOI: 10.9767/bcrec.16.4.12197.904-915
  31. Thapa, I., Mullen, B., Saleem, A., Leibig, C., Baker, R.T., Giorgi, J.B. (2017), Efficient green catalysis for the conversion of fructose to levulinic acid. Applied Catalysis A: General, 539, 70-79. DOI: 10.1016/j.apcata.2017.03.016
  32. Son, A.A., Nishimura, S., Ebitani, K. (2012). Synthesis of levulinic acid from fructose using Amberlyst-15 as a solid acid catalyst. Reaction Kinetics, Mechanisms and Catalysis, 106, 185-192. DOI: 10.1007/s11144-012-0429-1
  33. Hes, N., Mylin, A., Prudius, S. (2022). Catalytic production of levulinic and formic acid from fructose over superacid ZrO2-SiO2-SnO2 catalyst. Colloids and Interfaces, 6(1), 4. DOI: 10.3390/colloids6010004
  34. Cheng, X., Feng, Q., Ma, D., Xing, F., Zeng, X., Huang, X., Teng, J., Feng, L., (2022). Kinetics for glucose conversion to levulinic acid over solid acid catalyst in γ-valerolactone solution. Biochemical Engineering Journal, 180, 108360. DOI: 10.1016/j.bej.2022.108360
  35. Rackemann, D.W. (2014). Production of Levulinic acid and Other Chemicals From Sugarcane Fibre, Centre for Tropical Crops and Biocommodities. PhD Thesis. School of Chemistry, Physics and Mechanical Engineering, Faculty of Science and Technology, Queensland University of Technology"
  36. Chun, C., Xiaojian, M.A., Peilin, C. (2006). Kinetics of Levulinic Acid Formation from Glucose Decomposition at High Temperature. Chinese Journal of Chemical Engineering., 14(5), 708-712. DOI: 10.1016/S1004-9541(06)60139-0
  37. Wang, J., Cui, H., Wang, J., Li, Z., Wang, M., Yi, W. (2021). Kinetic insight into glucose conversion to 5-hydroxymethyl furfural and levulinic acid in LiCl⋅3H2O without additional catalyst. Chemical Engineering Journal, 415, 128922. DOI: 10.1016/j.cej.2021.128922
  38. Kumar, K., Pathak, S., Upadhyayula, S., (2020). 2nd generation biomass derived glucose conversion to 5-hydroxymethylfurfural and levulinic acid catalyzed by ionic liquid and transition metal sulfate: Elucidation of kinetics and mechanism. Journal of Cleaner Production, 256, 120292. DOI: 10.1016/j.jclepro.2020.120292
  39. Kim, H.S., Jeong, G.T. (2018). Valorization of galactose into levulinic acid via acid catalysis. Korean Journal of Chemical Engineering, 35(11), 2232-2240. DOI: 10.1007/s11814-018-0126-5
  40. Flannelly, T, Lopes, M., Kupiainen, L., Dooley, S., Leahy, J., (2015). Non-Stoichiometric Formation of Formic and Levulinic Acids from the Hydrolysis of Biomass Derived Hexose Carbohydrates. RSC Advances, 6, 5797-5804. DOI: 10.1039/C5RA25172A

Last update:

No citation recorded.

Last update:

No citation recorded.