skip to main content

Enhancement in Photocatalytic Efficiency of Commercial TiO2 Nanoparticles by Calcination: A Case of Doxycycline Removal

1Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet St., Dist. 10, Ho Chi Minh City, Vietnam

2Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Viet Nam

Received: 29 Mar 2022; Revised: 17 Jun 2022; Accepted: 20 Jun 2022; Available online: 22 Jun 2022; Published: 30 Sep 2022.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2022 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image

In this study, the pure and calcined forms of Degussa TiO2 were applied for photocatalytic removal of doxycycline - a broad-spectrum tetracycline antibiotic. The calcination of TiO2 at 500 °C enhanced the photocatalytic efficiency of the TiO2 under optimal operational conditions of 5 ppm of doxycycline, 0.25 g/L of TiO2, pH 6.5, 120 min, and room temperature. In addition, the changes in morphology, crystal structure, and optical properties of the materials before and after calcination were observed by scanning electron microscopy, X-ray diffraction, and UV-Visible spectroscopy. The reaction kinetics of the doxycycline removal was also investigated based on the Langmuir-Hinshelwood model with a correlation coefficient R2 of >80%. Results showed that the photocatalytic ability of TiO2 is stable and enhanced after being calcined at a suitable temperature of 500 °C. This opens up the potential application of TiO2 in the treatment of emerging organic pollutants in water. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (


Fulltext View|Download
Keywords: TiO2; photocatalytic; doxycycline; antibiotics; water treatment
Funding: Ho Chi Minh City University of Technology (HCMUT), VNU-HCM under contract Tc-MTTN-2021-04

Article Metrics:

  1. Chen, X., Selloni, A. (2014). Introduction: titanium dioxide (TiO2) nanomaterials. Chemical Reviews, 114(19), 9281-9282. DOI: 10.1021/cr500422r
  2. Noman, M.T., Ashraf, M.A., Ali, A. (2019). Synthesis and applications of nano-TiO2: a review. Environmental Science and Pollution Research, 26(4), 3262-3291. DOI: 10.1007/s11356-018-3884-z
  3. Gupta, S.M., Tripathi, M. (2011). A review of TiO2 nanoparticles. Chinese Science Bulletin, 56(16), 1639. DOI: 10.1007/s11434-011-4476-1
  4. Kovalakova, P., Cizmas, L., McDonald, T.J., Marsalek, B., Feng, M., Sharma, V.K. (2020). Occurrence and toxicity of antibiotics in the aquatic environment: A review. Chemosphere, 251, 126351. DOI: 10.1016/j.chemosphere.2020.126351
  5. Duong, H.A., Phung, T.V., Nguyen, T.N., Phan Thi, L.-A., Pham, H.V. (2021). Occurrence, distribution, and ecological risk assessment of antibiotics in selected urban lakes of Hanoi, Vietnam. Journal of Analytical Methods in Chemistry, 2021, 6631797. DOI: 10.1155/2021/6631797
  6. Rico, A., Phu, T.M., Satapornvanit, K., Min, J., Shahabuddin, A., Henriksson, P.J., Murray, F.J., Little, D.C., Dalsgaard, A., Van den Brink, P.J. (2013). Use of veterinary medicines, feed additives and probiotics in four major internationally traded aquaculture species farmed in Asia. Aquaculture, 412, 231-243. DOI: 10.1016/j.aquaculture.2013.07.028
  7. Tran, N.H., Hoang, L., Nghiem, L.D., Nguyen, N.M.H., Ngo, H.H., Guo, W., Trinh, Q.T., Mai, N.H., Chen, H., Nguyen, D.D. (2019). Occurrence and risk assessment of multiple classes of antibiotics in urban canals and lakes in Hanoi, Vietnam. Science of the Total Environment, 692, 157-174. DOI: 10.1016/j.scitotenv.2019.07.092
  8. Uchida, K., Konishi, Y., Harada, K., Okihashi, M., Yamaguchi, T., Do, M.H.N., Thi Bui, L., Duc Nguyen, T., Do Nguyen, P., Thi Khong, D. (2016). Monitoring of antibiotic residues in aquatic products in urban and rural areas of Vietnam. Journal of agricultural food chemistry, 64(31), 6133-6138. DOI: 10.1021/acs.jafc.6b00091
  9. Wei, R., Ge, F., Huang, S., Chen, M., Wang, R. (2011). Occurrence of veterinary antibiotics in animal wastewater and surface water around farms in Jiangsu Province, China. Chemosphere, 82(10), 1408-1414. DOI: 10.1016/j.chemosphere.2010.11.067
  10. Olarinmoye, O., Bakare, A., Ugwumba, O., Hein, A. (2016). Quantification of pharmaceutical residues in wastewater impacted surface waters and sewage sludge from Lagos, Nigeria. Journal of Environmental Chemistry Ecotoxicology, 8(3), 14-24. DOI: 10.5897/JECE2015.0364
  11. Jiang, L., Hu, X., Yin, D., Zhang, H., Yu, Z. (2011). Occurrence, distribution and seasonal variation of antibiotics in the Huangpu River, Shanghai, China. Chemosphere, 82(6), 822-828. DOI: 10.1016/j.chemosphere.2010.11.028
  12. Aniagor, C.O., Igwegbe, C.A., Ighalo, J.O., Oba, S.N. (2021). Adsorption of doxycycline from aqueous media: a review. Journal of Molecular Liquids, 334, 116124. DOI: 10.1016/j.molliq.2021.116124
  13. Abdulsahib, W.K., Ganduh, S.H., Mahdi, M.A., Jasim, L.S. (2020). Adsorptive removal of doxycycline from aqueous solution using graphene oxide/hydrogel composite. International Journal of Applied Pharmaceutics, 12(6), 100-106. DOI: 10.22159/ijap.2020v12i6.39118
  14. Mohammadi, A., Pourmoslemi, S. (2018). Enhanced photocatalytic degradation of doxycycline using a magnetic polymer-ZnO composite. Water Science Technology, 2017(3), 791-801. DOI: 10.2166/wst.2018.237
  15. Gao, J., Gao, Y., Sui, Z., Dong, Z., Wang, S., Zou, D. (2018). Hydrothermal synthesis of BiOBr/FeWO4 composite photocatalysts and their photocatalytic degradation of doxycycline. Journal of Alloys Compounds, 732, 43-51. DOI: 10.1016/j.jallcom.2017.10.092
  16. Borghi, A.A., Silva, M.F., Al Arni, S., Converti, A., Palma, M.S. (2015). Doxycycline degradation by the oxidative Fenton process. Journal of Chemistry, 2015. DOI: 10.1155/2015/492030
  17. Bolobajev, J., Trapido, M., Goi, A. (2016). Effect of iron ion on doxycycline photocatalytic and Fenton-based autocatatalytic decomposition. Chemosphere, 153, 220-226. DOI: 10.1016/j.chemosphere.2016.03.042
  18. Sierra, R.S.C., Zúñiga-Benítez, H., Peñuela, G.A. (2022). Photo-assisted removal of doxycycline using H2O2 and simulated sunlight: Operational parameters optimization and ecotoxicity assessment. Journal of Photochemistry Photobiology A: Chemistry, 425, 113697. DOI: 10.1016/j.jphotochem.2021.113697
  19. Miyata, M., Ihara, I., Yoshid, G., Toyod, K., Umetsu, K. (2011). Electrochemical oxidation of tetracycline antibiotics using a Ti/IrO2 anode for wastewater treatment of animal husbandry. Water Science Technology, 63(3), 456-461. DOI: 10.2166/wst.2011.243
  20. Romanovska, N.I., Manoryk, P.A., Selyshchev, O.V., Ermokhina, N.I., Yaremov, P.S., Grebennikov, V.M., Shcherbakov, S.M., Zahn, D.R.T. (2020). Effect of the Modification of TiO2 with Thiourea on its Photocatalytic Activity in Doxycycline Degradation. Theoretical and Experimental Chemistry, 56(3), 183-191. DOI: 10.1007/s11237-020-09650-6
  21. Do, T.C.M.V., Nguyen, D.Q., Nguyen, K.T., Le, P.H. (2019). TiO2 and Au-TiO2 Nanomaterials for Rapid Photocatalytic Degradation of Antibiotic Residues in Aquaculture Wastewater. Materials, 12(15), 2434. DOI: 10.3390/ma12152434
  22. Nguyen, N.H., Bai, H. (2014). Photocatalytic removal of NO and NO2 using titania nanotubes synthesized by hydrothermal method. Journal of Environmental Sciences, 26(5), 1180-1187. DOI: 10.1016/S1001-0742(13)60544-6
  23. Linh, H.X., Oanh, P.T., Huy, N.N., Van Hao, P., Ngoc Minh, P., Hong, P.N., Van Thanh, D. (2019). Electrochemical mass production of graphene nanosheets for arsenic removal from aqueous solutions. Materials Letters, 250, 16-19. DOI: 10.1016/j.matlet.2019.04.115
  24. Du, E., Zhang, Y.X., Zheng, L. (2009). Photocatalytic degradation of dimethyl phthalate in aqueous TiO2 suspension: a modified Langmuir–Hinshelwood model. Reaction Kinetics Catalysis Letters, 97(1), 83-90. DOI: 10.1007/s11144-009-0014-4
  25. Pourmoslemi, S., Mohammadi, A., Kobarfard, F., Amini, M. (2016). Photocatalytic removal of doxycycline from aqueous solution using ZnO nano-particles: a comparison between UV-C and visible light. Water Science Technology, 74(7), 1658-1670. DOI: 10.2166/wst.2016.339
  26. Yu, J., Yu, H., Cheng, B., Trapalis, C. (2006). Effects of calcination temperature on the microstructures and photocatalytic activity of titanate nanotubes. Journal of Molecular Catalysis A: Chemical, 249(1-2), 135-142. DOI: 10.1016/j.molcata.2006.01.003
  27. He, F., Ma, F., Li, J., Li, T., Li, G. (2014). Effect of calcination temperature on the structural properties and photocatalytic activities of solvothermal synthesized TiO2 hollow nanoparticles. Ceramics International, 40(5), 6441-6446. DOI: 10.1016/j.ceramint.2013.11.094
  28. Vo, T.T.T., Nguyen, H.S., Tran, T.T., Lam, P.T.H., Nguyen, T.T., Nguyen, N.H. (2020). Effects of environmental factors and synthesis conditions on the photocatalytic activity of titanate nanotubes for removal of gaseous formaldehyde. Research on Chemical Intermediates, 46(11), 4793-4809. DOI: 10.1007/s11164-020-04247-z
  29. Nguyen, N.H., Khoi, T.T., Hung, T.N., Xuan, Q.V.N., Thi, T.H., Le Thi, P., Thi, T.N. (2021). Photocatalytic disinfection of Coliforms and degradation of natural organic matters in river water using titanate nanotubes. Environmental Technology, 43(16), 2553-2567. DOI: 10.1080/09593330.2021.1889039
  30. Mahshid, S., Askari, M., Sasani Ghamsari, M., Afshar, N., Lahuti, S. (2009). Mixed-phase TiO2 nanoparticles preparation using sol–gel method. Journal of Alloys and Compounds, 478(1), 586-589. DOI: 10.1016/j.jallcom.2008.11.094
  31. Shah, A.H., Rather, M.A. (2021). Effect of calcination temperature on the crystallite size, particle size and zeta potential of TiO2 nanoparticles synthesized via polyol-mediated method. Materials Today: Proceedings, 44, 482-488. DOI: 10.1016/j.matpr.2020.10.199
  32. Behnajady, M.A., Eskandarloo, H., Modirshahla, N., Shokri, M. (2011). Investigation of the effect of sol–gel synthesis variables on structural and photocatalytic properties of TiO2 nanoparticles. Desalination, 278(1), 10-17. DOI: 10.1016/j.desal.2011.04.019
  33. Tripathi, A.K., Singh, M.K., Mathpal, M.C., Mishra, S.K., Agarwal, A. (2013). Study of structural transformation in TiO2 nanoparticles and its optical properties. Journal of Alloys and Compounds, 549, 114-120. DOI: 10.1016/j.jallcom.2012.09.012
  34. Horti, N.C., Kamatagi, M.D., Patil, N.R., Nataraj, S.K., Sannaikar, M.S., Inamdar, S.R. (2019). Synthesis and photoluminescence properties of titanium oxide (TiO2) nanoparticles: Effect of calcination temperature. Optik, 194, 163070. DOI: 10.1016/j.ijleo.2019.163070
  35. Scanlon, D.O., Dunnill, C.W., Buckeridge, J., Shevlin, S.A., Logsdail, A.J., Woodley, S.M., Catlow, C.R.A., Powell, M.J., Palgrave, R.G., Parkin, I.P., Watson, G.W., Keal, T.W., Sherwood, P., Walsh, A., Sokol, A.A. (2013). Band alignment of rutile and anatase TiO2. Nature Materials, 12(9), 798-801. DOI: 10.1038/nmat3697
  36. Lv, K., Yu, J., Deng, K., Li, X., Li, M. (2010). Effect of phase structures on the formation rate of hydroxyl radicals on the surface of TiO2. Journal of Physics and Chemistry of Solids, 71(4), 519-522. DOI: 10.1016/j.jpcs.2009.12.026
  37. Yaemsunthorn, K., Kobielusz, M., Macyk, W. (2021). TiO2 with Tunable Anatase-to-Rutile Nanoparticles Ratios: How Does the Photoactivity Depend on the Phase Composition and the Nature of Photocatalytic Reaction? ACS Applied Nano Materials, 4(1), 633-643. DOI: 10.1021/acsanm.0c02932
  38. Hamadanian, M., Reisi-Vanani, A., Majedi, A. (2009). Preparation and characterization of S-doped TiO2 nanoparticles, effect of calcination temperature and evaluation of photocatalytic activity. Materials Chemistry and Physics, 116(2), 376-382. DOI: 10.1016/j.matchemphys.2009.03.039
  39. Lei, X.F., Xue, X.X., Yang, H., Chen, C., Li, X., Niu, M.C., Gao, X.Y., Yang, Y.T. (2015). Effect of calcination temperature on the structure and visible-light photocatalytic activities of (N, S and C) co-doped TiO2 nano-materials. Applied Surface Science, 332, 172-180. DOI: 10.1016/j.apsusc.2015.01.110
  40. Liu, W., Li, Z., Kang, Q., Wen, L. (2021). Efficient photocatalytic degradation of doxycycline by coupling α-Bi2O3/g-C3N4 composite and H2O2 under visible light. Environmental Research, 197, 110925. DOI: 10.1016/j.envres.2021.110925
  41. Liu, W., Zhou, J., Zhou, J. (2019). Facile fabrication of multi-walled carbon nanotubes (MWCNTs)/α-Bi2O3 nanosheets composite with enhanced photocatalytic activity for doxycycline degradation under visible light irradiation. Journal of Materials Science, 54(4), 3294-3308. DOI: 10.1007/s10853-018-3090-x
  42. Yan, X., Qian, J., Pei, X., Zhou, L., Ma, R., Zhang, M., Du, Y., Bai, L. (2021). Enhanced photodegradation of doxycycline (DOX) in the sustainable NiFe2O4/MWCNTs/BiOI system under UV light irradiation. Environmental Research, 199, 111264. DOI: 10.1016/j.envres.2021.111264
  43. Hong, P., Li, Y., He, J., Saeed, A., Zhang, K., Wang, C., Kong, L., Liu, J. (2020). Rapid degradation of aqueous doxycycline by surface CoFe2O4/H2O2 system: behaviors, mechanisms, pathways and DFT calculation. Applied Surface Science, 526, 146557. DOI: 10.1016/j.apsusc.2020.146557

Last update:

No citation recorded.

Last update:

No citation recorded.