CeO2-TiO2 Photocatalyst: Ionic Liquid-Mediated Synthesis, Characterization, and Performance for Diisopropanolamine Visible Light Degradation

*Jagath Retchahan Sivalingam  -  Fundamental and Applied Sciences Department, University of Technology PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak, Malaysia
Fai Kait Chong  -  Fundamental and Applied Sciences Department, University of Technology PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak, Malaysia
Cecilia Devi Wilfred  -  Fundamental and Applied Sciences Department, University of Technology PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak, Malaysia
Received: 26 Jul 2017; Revised: 22 Oct 2017; Accepted: 29 Oct 2017; Published: 2 Apr 2018; Available online: 22 Jan 2018.
Open Access Copyright (c) 2018 Bulletin of Chemical Reaction Engineering & Catalysis
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image
Article Info
Section: The International Conference on Fluids and Chemical Engineering (FluidsChE 2017)
Language: EN
Statistics: 1107 462

CeO2-TiO2 photocatalyst with Ce:Ti molar ratio of 1:9 was synthesized via co-precipitation method in the presence of 1-ethyl-3-methyl imidazolium octylsulfate, [EMIM][OctSO4] (CeO2-TiO2-IL). The ionic liquid acts as a templating agent for particle growth. The CeO2-TiO2 and TiO2 photocatalysts were also synthesized without any ionic liquid for comparison. Calcination was conducted on the as-synthesized materials at 400˚C for 2 h. The photocatalysts were characterized using diffuse reflectance UV-Vis spectroscopy (DR-UV-Vis), field emission scanning electron microscopy (FESEM), X-ray powder diffraction (XRD), and surface area and pore size analyzer (SAP). The presence of CeO2 has changed the optical property of TiO2. It has extended the absorption edge of TiO2 from UV to visible region. The calculated band gap energy decreased from 2.82 eV (TiO2) to 2.30 eV (CeO2-TiO2-IL). The FESEM morphology showed that samples forms aggregates and the surface smoothens when ionic liquid was added. The average crystallite size of TiO2, CeO2-TiO2, and CeO2-TiO2-IL were 20.8 nm, 5.5 nm, and 4 nm. In terms of performance, photodegradation of 1000 ppm of diisopropanolamine (DIPA) was conducted in the presence of hydrogen peroxide (H2O2) and visible light irradiation which was provided by a 500 W halogen lamp. The best performance was displayed by CeO2-TiO2-IL calcined at 400˚C. It was able to remove 82.0% DIPA and 54.8% COD after 6 h reaction.  Copyright © 2018 BCREC Group. All rights reserved

Received: 26th July 2017; Revised: 22nd October 2017; Accepted: 29th October 2017; Available online: 22nd January 2018; Published regularly: 2nd April 2018

How to Cite: Sivalingam, J.R., Kait, C.F., Wilfred, C.D. (2018). CeO2-TiO2 Photocatalyst: Ionic Liquid-Mediated Synthesis, Characterization, and Performance for Diisopropanolamine Visible Light Degradation. Bulletin of Chemical Reaction Engineering & Catalysis, 13 (1): 170-178 (doi:10.9767/bcrec.13.1.1396.170-178)


Keywords: TiO2; CeO2; DIPA; ionic liquid; photocatalyst

Article Metrics:

  1. Hansen, B.H., Altin, D., Booth, A., Vang, S. H., Frenzel, M., Sørheim, K.R., Størseth, T.R. (2010). Molecular effects of diethanolamine exposure on Calanus finmarchicus (Crustacea: Copepoda). Aquatic Toxicology, 99(2): 212-222.
  2. Ramli, R.M., Kait, C.F., Omar, A.A. (2016). Remediation of DIPA Contaminated Wastewater Using Visible Light Active Bimetallic Cu-Fe/TiO2 Photocatalyst. Procedia Engineering, 148: 508-515.
  3. Ramli, R.M., Chong, F.K., Omar, A.A., Murugesan, T. (2015). Performance of surfactant assisted synthesis of Fe/TiO2 on the photodegradation of diisopropanolamine. CLEAN–Soil, Air, Water, 43(5): 690-697.
  4. Riaz, N., Bustam, M.A., Chong, F.K., Man, Z.B., Khan, M.S., Shariff, A.M. (2014). Photocatalytic Degradation of DIPA Using Bimetallic Cu-Ni/TiO2 Photocatalyst under Visible Light Irradiation. The Scientific World Journal. 2014: 342020-342020
  5. (TDMA) Titanium Dioxide Manufacturers Association. (2012). About Titanium Dioxide. Citing Internet sources URL
  6. Khang, N.C., Van, M.N., Yang, I.S. (2011). Synthesis and characterization of the N-doped TiO2 photocatalyst for the photodegradation of methylene blue and phenol. Journal of Nanoscience and Nanotechnology, 11(7): 6494-6498.
  7. Rhodia. (2012). Cerium Dioxide. Citing Internet sources URL
  8. Magesh, G., Viswanathan, B., Viswanath, R. P., Varadarajan, T.K. (2009). Photocatalytic behavior of CeO2-TiO2 system for the degradation of methylene blue. Indian journal of Chemistry. Section A: Inorganic, Physical, Theoretical & Analytical. 48(4): 480-488
  9. Fiorenza, R., Bellardita, M., D’Urso, L., Compagnini, G., Palmisano, L., Scirè, S. (2016). Au/TiO2-CeO2 Catalysts for Photocatalytic Water Splitting and VOCs Oxidation Reactions. Catalysts, 6: 121
  10. Plechkova, N.V., Seddon, K.R. (2008). Applications of ionic liquids in the chemical industry. Chemical Society Reviews, 37(1): 123-150.
  11. González, B., Gómez, E., Domínguez, A., Vilas, M., Tojo, E. (2010). Physicochemical characterization of new sulfate ionic liquids. Journal of Chemical & Engineering Data, 56(1): 14-20.
  12. Sherly, E.D., Vijaya, J.J., Kennedy, L.J. (2015). Effect of CeO2 coupling on the structural, optical and photocatalytic properties of ZnO nanoparticle. Journal of Molecular Structure, 1099: 114-125.
  13. Liu, H., Wang, M., Wang, Y., Liang, Y., Cao, W., Su, Y. (2011). Ionic liquid-templated synthesis of mesoporous CeO2-TiO2 nanoparticles and their enhanced photocatalytic activities under UV or visible light. Journal of Photochemistry and Photobiology A: Chemistry, 223(2): 157-164.
  14. Nan, A., Liebscher, J. (2011). Ionic liquids as advantageous solvents for preparation of nanostructures. In: Handy S (ed) Applications of ionic liquids in science and technology. Pub InTech, Rijeka, Croatia, Chapter 14, pp. 287–301
  15. Miao, S., Liu, Z., Miao, Z., Han, B., Ding, K., An, G., Xie, Y. (2009). Ionic liquid-mediated synthesis of crystalline CeO2 mesoporous films and their application in aerobic oxidation of benzyl alcohol. Microporous and Mesoporous Materials, 117: 386-390.
  16. Abdullah, H., Khan, M.R., Pudukudy, M., Yaakob, Z., Ismail, N.A. (2015). CeO2-TiO2 as a visible light active catalyst for the photoreduction of CO2 to methanol. Journal of Rare Earths, 33(11): 1155-1161.
  17. Li, W., Wang, Y., Ji, B., Jiao, X., Chen, D. (2015). Flexible Pd/CeO2-TiO2 nanofibrous membrane with high efficiency ultrafine particulate filtration and improved CO catalytic oxidation performance. RSC Advances, 5(72): 58120-58127.
  18. Zuas, O., Hamim, N. (2013). Synthesis, Characterization and Properties of CeO2-doped TiO2 Composite Nanocrystals. Materials Science, 19(4): 443-447.
  19. Verma, R., Samdarshi, S.K., Singh, J. (2015). Hexagonal Ceria Located at the Interface of Anatase/Rutile TiO2 Superstructure Optimized for High Activity under Combined UV and Visible-Light Irradiation. The Journal of Physical Chemistry C, 119(42): 23899-23909.
  20. Vijayalakshmi, R., Rajendran, V. (2012). Synthesis and characterization of nano-TiO2 via different methods. Archives of Applied Science Research, 4(2), 1183-1190.
  21. Singh, M.P., Mandal, S.K., Verma, Y.L., Gupta, A.K., Singh, R.K., Chandra, S. (2014). Viscoelastic, surface, and volumetric properties of ionic liquids [BMIM][OcSO4] [BMIM][PF6], and [EMIM][MeSO3]. Journal of Chemical & Engineering Data, 59(8): 2349-2359.
  22. Xu, A.W., Gao, Y., Liu, H.Q. (2002). The preparation, characterization, and their photocatalytic activities of rare-earth-doped TiO2 nanoparticles. Journal of Catalysis, 207: 151-157.
  23. Sing, K., Williams, R. (2004). Physisorption hysteresis loops and the characterization of nanoporous materials. Adsorption Science & Technology, 22(10): 773-782.
  24. Tan, Y.H., Davis, J.A., Fujikawa, K., Ganesh, N.V., Demchenko, A.V., Stine, K.J. (2012). Surface area and pore size characteristics of nanoporous gold subjected to thermal, mechanical, or surface modification studied using gas adsorption isotherms, cyclic voltammetry, thermogravimetric analysis, and scanning electron microscopy. Journal of Materials Chemistry, 22(14): 6733-6745.
  25. Kumar, D.A., Shyla, J.M., Xavier, F.P. (2012). Synthesis and characterization of TiO2/SiO2 nano composites for solar cell applications. Applied Nanoscience, 2(4): 429-436.
  26. Sayari, A., Jaroniec, M. (2002). Nanoporous materials III. Elsevier.
  27. Wang, Y., Zhao, J., Wang, T., Li, Y., Li, X., Yin, J., Wang, C. (2016). CO2 photoreduction with H2O vapor on highly dispersed CeO2/TiO2 catalysts: Surface species and their reactivity. Journal of Catalysis, 337: 293-302.
  28. Fang, J., Bao, H., He, B., Wang, F., Si, D., Jiang, Z., Huang, W. (2007). Interfacial and surface structures of CeO2-TiO2 mixed oxides. The Journal of Physical Chemistry C, 111(51): 19078-19085.
  29. Lopez, T., Rojas, F., Alexander-Katz, R., Galindo, F., Balankin, A., Buljan, A. (2004). Porosity, structural and fractal study of sol–gel TiO2-CeO2 mixed oxides. Journal of Solid State Chemistry, 177(6): 1873-1885.
  30. Gaol, F.L., Webb, J. (Eds.). (2014). Recent Trends in Nanotechnology and Materials Science: Selected Review Papers from the 2013 International Conference on Manufacturing, Optimization, Industrial and Material Engineering (MOIME 2013). Springer.
  31. CCME. (2007). Canadian soil quality guidelines for the protection of environmental and human health: summary tables.

No citation recorded.