skip to main content

Photocatalytic Efficiency of Titanium Dioxide for Dyes and Heavy Metals Removal from Wastewater

1Nanotechnology & Catalysis Research Centre, University of Malaya, 50603 Kuala Lumpur, Malaysia

2Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Kampus Terpadu UII, Jl. Kaliurang Km 14, Sleman, Yogyakarta, Indonesia

3Department of Chemical Engineering, Chukwuemeka Odumegwu Ojukwu University, Uli Campus, Anambra State, Nigeria

4 Department of Chemistry, Mutah University, P.O.BOX 7, Mutah 61710, Karak, Jordan

5 Department of Physics, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India

6 Department of Chemistry, College of Natural and Computational Sciences, Debre Berhan University, Ethiopia

7 Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 700000 , Viet Nam

8 Vietnam National University Ho Chi Minh City, Ho Chi Minh City 700000, Viet Nam

View all affiliations
Received: 26 Mar 2022; Revised: 19 May 2022; Accepted: 20 May 2022; Available online: 25 May 2022; Published: 30 Jun 2022.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2022 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image
Abstract

The hazardous toxicity of dye materials, even in low concentrations, harms ecological systems. It releases a large number of contaminants into the water, resulting as waste water. Dyes prevent the process of photosynthesis by obstructing light passage, lowers the oxygen levels dissolved in the water. Also, a good number of the dyes and heavy metals are carcinogenic and mutagenic to human beings. Heterogeneous photocatalysis is a promising technology for removing organic, inorganic, and microbial pollutants from water and wastewater. It is preferable to other conventional wastewater treatment approaches due to its benefit, such as low cost, environmental friendliness, ability to proceed at ambient temperature and pressure conditions, and to completely degrade pollutants into environmentally safe products with suitable measures. The titanium oxide (TiO2) is one of the most promising material that has gained enormous importance in the field of energy and environmental applications. The unique physicochemical properties of TiO2 make it one of the best candidates among existing photocatalysts. This review provides an overview of strategies employed to augment its catalytic performance as well as the impact of different operational parameters on the removal proficiency of various organic and inorganic pollutants in water and wastewater treatment. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Fulltext View|Download
Keywords: TiO2; Heterogeneous photocatalysis; Organic pollutants; Toxic heavy metal ion; Wastewater treatment
Funding: University of Malaya Research Grant under contract RU001-2019, RU001-2020 and RU001-2021; Mutah University under contract Mutah University

Article Metrics:

  1. Zhao, Y., Wang, Y., Xiao, G., Su, H. (2019). Fabrication of biomaterial/TiO2 composite photocatalysts for the selective removal of trace environmental pollutants. Chinese Journal of Chemical Engineering, 27, 1416–1428. DOI: 10.1016/j.cjche.2019.02.003
  2. Gopinath, K.P., Madhav, N.V., Krishnan, A., Malolan, R., Rangarajan, G. (2020). Present applications of titanium dioxide for the photocatalytic removal of pollutants from water: A review. Journal of Environmental Management, 270, 110906. DOI: 10.1016/j.jenvman.2020.110906
  3. Al-Buriahi, A.K., Al-Gheethi, A.A., Senthil Kumar, P., Radin Mohamed, R.M.S., Yusof, H., Alshalif, A.F., Khalifa, N.A. (2022). Elimination of rhodamine B from textile wastewater using nanoparticle photocatalysts: A review for sustainable approaches. Chemosphere, 287, 132162. DOI: 10.1016/j.chemosphere.2021.132162
  4. Chen, D., Cheng, Y., Zhou, N., Chen, P., Wang, Y., Li, K., Huo, S., Cheng, P., Peng, P., Zhang, R., Wang, L., Liu, H., Liu, Y., Ruan, R. (2020). Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: A review. Journal of Cleaner Production, 268, 121725. DOI: 10.1016/j.jclepro.2020.121725
  5. Das, A., Adak, M.K., Mahata, N., Biswas, B. (2021). Wastewater treatment with the advent of TiO2 endowed photocatalysts and their reaction kinetics with scavenger effect. Journal of Molecular Liquids, 338, 116479. DOI: 10.1016/j.molliq.2021.116479
  6. Dlamini, M.C., Maubane-Nkadimeng, M.S., Moma, J.A. (2021). The use of TiO2/clay heterostructures in the photocatalytic remediation of water containing organic pollutants: A review. Journal of Environmental Chemical Engineering, 9, 106546. DOI: 10.1016/j.jece.2021.106546
  7. Tahir, M.B., Rafique, M., Rafique, M.S., Nawaz, T., Rizwan, M., Tanveer, M. (2020). Photocatalytic Nanomaterials for degradation of organic pollutant and heavy metals. In: M.B. Tahir, M. Rafique, M.S. Rafique, Nanotechnology and Photocatalysis for Environmental Applications, Micro and Nano Technologies, Elsevier B.V., pp. 119-138. DOI: 10.1016/B978-0-12-821192-2.00008-5
  8. Sibhatu, A.K., Weldegebrieal, G.K., Sagadevan, S., Tran, N.N., Hessel, V. (2022). Photocatalytic activity of CuO nanoparticles for organic and inorganic pollutants removal in wastewater remediation. Chemosphere, 300, 134623. DOI: 10.1016/j.chemosphere.2022.134623
  9. Pandey, B., Singh, P., Kumar, V. (2021). Photocatalytic-sorption processes for the removal of pollutants from wastewater using polymer-metal oxide nanocomposites and associated environmental risks. Environmental Nanotechnology, Monitoring & Management, 16, 100596. DOI: 10.1016/j.enmm.2021.100596
  10. WHO. (2017). Guidelines for Drinking-water Quality. Fourth Ed. 631
  11. Ramalingam, G., Pachaiappan, R., Kumar, P.S., Dharani, S., Rajendran, S., Vo, D.V.N., Hoang, T.K.A. (2022). Hybrid metal-organic frameworks as an Exotic material for the photocatalytic degradation of pollutants present in wastewater: A review. Chemosphere, 288, 132448. DOI: 10.1016/j.chemosphere.2021.132448
  12. Peñas-Garzón, M., Abdelraheem, W.H.M., Belver, C., Rodriguez, J.J., Bedia, J., Dionysiou, D.D. (2021). TiO2-carbon microspheres as photocatalysts for effective remediation of pharmaceuticals under simulated solar light. Separation and Purification Technology, 275, 119169. DOI: 10.1016/j.seppur.2021.119169
  13. Al-Mamun, M.R., Kader, S., Islam, M.S., Khan, M.Z.H. (2019). Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: A review. Journal of Environmental Chemical Engineering, 7(5), 103248. DOI: 10.1016/j.jece.2019.103248
  14. Gusain, R., Gupta, K., Joshi, P., Khatri, O.P. (2019). Adsorptive removal and photocatalytic degradation of organic pollutants using metal oxides and their composites: A comprehensive review. Advances in Colloid and Interface Science, 272, 102009. DOI: 10.1016/j.cis.2019.102009
  15. Tijani, J.O., Abdullahi, M.N., Bankole, M.T., Mustapha, S., Egbosiuba, T.C., Ndamitso, M.M., Abdulkareem, A.S., Muzenda, E. (2021). Photocatalytic and toxicity evaluation of local dyeing wastewater by aluminium/boron doped WO3 nanoparticles. Journal of Water Process Engineering, 44, 102376. DOI: 10.1016/j.jwpe.2021.102376
  16. Xia, T., Lin, Y., Li, W., Ju, M. (2021). Photocatalytic degradation of organic pollutants by MOFs based materials: A review. Chinese Chemical Letters, 32(10), 2975-2984. DOI: 10.1016/j.cclet.2021.02.058
  17. Muñoz, I., José Gómez, M., Molina-Díaz, A., Huijbregts, M.A., Fernández-Alba, A.R., García-Calvo, E. (2008). Ranking potential impacts of priority and emerging pollutants in urban wastewater through life cycle impact assessment. Chemosphere, 74(1), 37-44. DOI: 10.1016/j.chemosphere.2008.09.029
  18. Wankhade, A.V., Gaikwad, G.S., Dhonde, M.G., Khaty, N.T., Thakare, S.R. (2013). Removal of Organic Pollutant from Water by Heterogeneous Photocatalysis: A Review. Research Journal of Chemistry and Environment, 17 (1), 84-94
  19. Grabowska, E., Marchelek, M., Klimczuk, T., Trykowski, G., Zaleska-Medy, A. (2016). Noble metal modified TiO2 microspheres: Sur- 645 face properties and photocatalytic activity under UV-vis and visible light. Journal of Molecular Catalysis A: Chemical, 423, 191-206. DOI: 10.1016/J.MOLCATA.2016.06.021
  20. Khedr, T.M., El-Sheikh, S.M., Hakki, A., Ismail, A.A., Badawy, W.A., Bahnemann, D.W. (2017). Highly active non-metals doped mixed-phase TiO2 for photocatalytic oxidation of ibuprofen under visible light. Journal of Photochemistry and Photobiology A: Chemistry, 346, 530-540. DOI: 10.1016/j.jphotochem.2017.07.004
  21. Gupta, S.M., Tripathi, M. (2011). A review of TiO2 nanoparticles. Chinese Science Bulletin, 56, 1639. DOI: 10.1007/s11434-011-4476-1
  22. Yun, S.M., Palanivelu, K., Kim, Y.H., Kang, P.H., Lee, Y.S. (2008). Preparation and characterization of carbon-covered TiO2 using sucrose 653 for solar photodegradation. Journal of Industrial and Engineering Chemistry, 14(5), 667-671. DOI: 10.1016/j.jiec.2008.02.010
  23. Shao, P., Tian, J., Zhao, Z., Shi, W., Gao, S., Cui, F. (2015). Amorphous TiO2 doped with carbon for visible light photodegradation of 655 rhodamine B and 4-chlorophenol. Applied Surface Science, 324, 35-43. DOI: 10.1016/j.apsusc.2014.10.108
  24. Singh, S.I.P., Abdullah, M.M., Sagadevan, S., Kaur, C. (2019). Highly sensitive ethanol sensor based on TiO2 nanoparticles and its photocatalyst activity. Optik, 182, 512-518. DOI: 10.1016/j.ijleo.2019.01.077
  25. Hashimoto K., Irie H., Fujishima A.(2005). TiO2 Photocatalysis: A Historical Overview and Future Prospects. Japanese Journal of Applied Physics, 44(12), 8269–8285. DOI: 10.1143/JJAP.44.8269
  26. Sagadevan, S., Vennila, S., Singh, P., Lett, J.A., Oh, W.C., Paiman, S., Mohammad, F., Al-Lohedan, H.A., Fatimah, I., Shahid, M.M., Obulapuram, P.K. (2020). Exploration of the antibacterial capacity and ethanol sensing ability of Cu-TiO2 nanoparticles. Journal of Experimental Nanoscience, 15, 337-349. DOI: 10.1080/17458080.2020.1796979
  27. Sagadevan, S., Lett, J.A., Vennila, S., Prasath, P.V., Kaliaraj, G.S., Fatimah, I., Léonard, E., Mohammad, F., Al-Lohedan, H.A., Alshahateet, S.F., Lee, C.T. (2021). Photocatalytic activity and antibacterial efficacy of titanium dioxide nanoparticles mediated by Myristica fragrans seed extract. Chemical Physics Letters, 771, 138527. DOI: 10.1016/j.cplett.2021.138527
  28. Baruah, S., Pal, S.K., Dutta, J. (2012). Nanostructured Zinc Oxide for water treatment. Nanoscience & Nanotechnology-Asia, 2(2), 90-102. DOI: 10.2174/2210681211202020090
  29. Chong, M.N., Jin, B., Chow, C.W.K., Saint, C. (2010). Recent developments in photocatalytic water treatment technology: a review. Water Research, 44(10), 2997-3027. DOI: 10.1016/j.watres.2010.02.039
  30. Reddy, D.H.K., Lee, S.M. (2012). Water Pollution and Treatment Technologies. Journal of Environmental & Analytical Toxicology, 2(5), 1000e103. DOI: 10.4172/2161-0525.1000e103
  31. Bahnemann, D. (2004). Photocatalytic water treatment: solar energy applications. Solar Energy, 77(5), 445-459. DOI: 10.1016/j.solener.2004.03.031
  32. Vinu, R., Madras, G. (2004). Environmental remediation by photocatalysis. Journal of the Indian Institute of Science, 90(2), 189-230
  33. Pelaez, M., Nolan, N.T., Pillai, S.C., Seery, M.K., Falaras, P., Kontos, A.G., Dunlop, P.S., Hamilton, J.W., Byrne, J., O’Shea, K., Entezari, M.H., Dionysiou, D.D. (2012). A review on the visible light active titanium dioxide photocatalysts for environmental applications. Applied Catalysis B, 125(21), 331-349. DOI: 10.1016/j.apcatb.2012.05.036
  34. Alam, M.Z., Ahmad, S., Malik, A., Ahmad, M. (2010). Mutagenicity and genotoxicity of tannery effluents used for irrigation at Kanpur, India. Ecotoxicology and Environmental Safety, 73(7), 1620-1628. DOI: 10.1016/j.ecoenv.2010.07.009
  35. Wang, Y., Liu, X., Guo, L., Shang, L., Ge, S., Song, G., Naik, N., Shao, Q., Lin, J., Guo, Z. (2021). Metal organic framework-derived C-doped ZnO/TiO2 nanocomposite catalysts for enhanced photodegradation of Rhodamine B. Journal of Colloid and Interface Science, 599, 566-576. DOI: 10.1016/j.jcis.2021.03.167
  36. Sun, H., Guo, Y., Zelekew, O.A., Abdeta, A.B., Kuo, D.H., Wu, Q., Zhang, J., Yuan, Z., Lin, J., Chen, X. (2021). Biological renewable nanocellulose templated CeO2/TiO2 synthesis and its photocatalytic removal efficiency of pollutants. Journal of Molecular Liquids, 336, 116873. DOI: 10.1016/j.molliq.2021.116873
  37. Chairungsri, W., Subkomkaew, A., Kijjanapanich, P., Chimupala, Y. (2022). Direct dye wastewater photocatalysis using immobilized titanium dioxide on a fixed substrate. Chemosphere, 286, 131762. DOI: 10.1016/j.chemosphere.2021.131762
  38. Le, A.T., Tan, Z.H., Sivakumar, R., Pung, S.Y. (2021). Predicting the photocatalytic performance of metal/metal oxide coupled TiO2 particles using Response Surface Methodology (RSM). Materials Chemistry and Physics, 269, 124739. DOI: 10.1016/j.matchemphys.2021.124739
  39. Lu, X., Li, Z., Liu, Y., Tang, B., Zhu, Y., Razal, J.M., Pakdel, E., Wang, J., Wang, X. (2020). Titanium dioxide coated carbon foam as a microreactor for improved sunlight driven treatment of cotton dyeing wastewater. Journal of Cleaner Production, 246, 118949. DOI: 10.1016/j.jclepro.2019.118949
  40. Tichapondwa, S.M., Newman, J.P., Kubheka, O.(2020). Effect of TiO2 phase on the photocatalytic degradation of methylene blue dye. Physics and Chemistry of the Earth, Parts A/B/C, 118–119, 102900. DOI: 10.1016/j.pce.2020.102900
  41. Nguyen, C.H., Tran, M.L., Tran, T.T. Van, Juang, R.S. (2020). Enhanced removal of various dyes from aqueous solutions by UV and simulated solar photocatalysis over TiO2/ZnO/rGO composites. Separation and Purification Technology, 232, 115962. DOI: 10.1016/j.seppur.2019.115962
  42. Yang, T., Peng, J., Zheng, Y., He, X., Hou, Y., Wu, L., Fu, X. (2018). Enhanced photocatalytic ozonation degradation of organic pollutants by ZnO modified TiO2 nanocomposites. Applied Catalysis B: Environmental, 221, 223-234. DOI: 10.1016/j.apcatb.2017.09.025
  43. Indira, K., Shanmugam, S., Hari, A., Vasantharaj, S., Sathiyavimal, S., Brindhadevi, K., El Askary, A., Elfasakhany, A., Pugazhendhi, A. (2021). Photocatalytic degradation of congo red dye using nickel–titanium dioxide nanoflakes synthesized by Mukia madrasapatna leaf extract. Environmental Research, 202, 111647. DOI: 10.1016/j.envres.2021.111647
  44. Sugashini, S., Gomathi, T., Devi, R.A., Sudha, P.N., Rambabu, K., Banat, F.(2022). Nanochitosan/carboxymethyl cellulose/TiO2 biocomposite for visible-light-induced photocatalytic degradation of crystal violet dye. Environmental Research, 204, 112047. DOI: 10.1016/j.envres.2021.112047
  45. Kiwaan, H.A., Atwee, T.M., Azab, E.A., El-Bindary, A.A. (2020). Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide. Journal of Molecular Structure, 1200, 127115. DOI: 10.1016/j.molstruc.2019.127115
  46. Javanbakht, V., Mohammadian, M. (2021). Photo-assisted advanced oxidation processes for efficient removal of anionic and cationic dyes using Bentonite/TiO2 nano-photocatalyst immobilized with silver nanoparticles. Journal of Molecular Structure, 1239, 130496. DOI: 10.1016/j.molstruc.2021.130496
  47. Kurniawan, T.A., Mengting, Z., Fu, D., Yeap, S.K., Othman, M.H.D., Avtar, R., Ouyang, T. (2020). Functionalizing TiO2 with graphene oxide for enhancing photocatalytic degradation of methylene blue (MB) in contaminated wastewater. Journal of Environmental Management, 270, 110871. DOI: 10.1016/j.jenvman.2020.110871
  48. Ngoepe, N.M., Mathipa, M.M., Hintsho-Mbita, N.C. (2020). Biosynthesis of titanium dioxide nanoparticles for the photodegradation of dyes and removal of bacteria. Optik, 224, 165728. DOI: 10.1016/j.ijleo.2020.165728
  49. Loo, W.W., Pang, Y.L., Lim, S., Wong, K.H., Lai, C.W., Abdullah, A.Z. (2021). Enhancement of photocatalytic degradation of Malachite Green using iron doped titanium dioxide loaded on oil palm empty fruit bunch-derived activated carbon. Chemosphere, 272, 129588. DOI: 10.1016/j.chemosphere.2021.129588
  50. Rani, M., Keshu, K., Shanker, U. (2021). Efficient degradation of organic pollutants by novel titanium dioxide coupled bismuth oxide nanocomposite: Green synthesis, kinetics and photoactivity. Journal of Environmental Management, 300, 113777. DOI: 10.1016/j.jenvman.2021.113777
  51. Al-Mamun, M.R., Kader, S., Islam, M.S. (2021). Solar-TiO2 immobilized photocatalytic reactors performance assessment in the degradation of methyl orange dye in aqueous solution. Environmental Nanotechnology, Monitoring & Management, 16, 100514. DOI: 10.1016/j.enmm.2021.100514
  52. Al-Mamun, M.R., Karim, M.N., Nitun, N.A., Kader, S., Islam, M.S., Khan, M.Z.H. (2021). Photocatalytic performance assessment of GO and Ag co-synthesized TiO2 nanocomposite for the removal of methyl orange dye under solar irradiation. Environmental Technology & Innovation, 22, 101537. DOI: 10.1016/j.eti.2021.101537
  53. Burakov, A.E., Galunin, E. V., Burakova, I. V., Kucherova, A.E., Agarwal, S., Tkachev, A.G., Gupta, V.K. (2018). Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review. Ecotoxicology and Environmental Safety, 148, 702-712. DOI: 10.1016/j.ecoenv.2017.11.034
  54. Egbosiuba, T.C., Chika, M., Oladejo, J., Mustapha, S., Saka, A., Sanni, A. (2022). Activated multi-walled carbon nanotubes decorated with zero-valent nickel nanoparticles for arsenic, cadmium and lead adsorption from wastewater in batch and continuous flow modes. Journal of Hazardous Materials, 423, 126993. DOI: 10.1016/j.jhazmat.2021.126993
  55. Qin, J., Ye, S., Yan, K., Zhang, J. (2022). Visible light-driven photoelectrocatalysis for simultaneous removal of oxytetracycline and Cu (II) based on plasmonic Bi/Bi2O3/TiO2 nanotubes. Journal of Colloid and Interface Science, 607, 1936-1943. DOI: 10.1016/j.jcis.2021.10.008
  56. Li, Y., Cui, W., Liu, L., Zong, R., Yao, W., Liang, Y., Zhu, Y. (2016). Removal of Cr(VI) by 3D TiO2-graphene hydrogel via adsorption enriched with photocatalytic reduction. Applied Catalysis B: Environmental, 199, 412-423. DOI: 10.1016/j.apcatb.2016.06.053
  57. You, S., Hu, Y., Liu, X., Wei, C. (2018). Synergetic removal of Pb(II) and dibutyl phthalate mixed pollutants on Bi2O3-TiO2 composite photocatalyst under visible light. Applied Catalysis B: Environmental, 232, 288-298. DOI: 10.1016/j.apcatb.2018.03.025
  58. Li, Q.H., Dong, M., Li, R., Cui, Y.Q., Xie, G.X., Wang, X.X., Long, Y.Z. (2021). Enhancement of Cr(VI) removal efficiency via adsorption/photocatalysis synergy using electrospun chitosan/g-C3N4/TiO2 nanofibers. Carbohydrate Polymers, 253, 117200. DOI: 10.1016/j.carbpol.2020.117200
  59. Cai, J., Li, H. (2020). Electrospun polymer nanofibers coated with TiO2 hollow spheres catalyze for high synergistic photo-conversion of Cr(VI) and As(III) using visible light. Chemical Engineering Journal, 398, 125644. DOI: 10.1016/j.cej.2020.125644
  60. Sun, Y., Xu, L., Jin, P., Bai, X., Jin, X., Shi, X.(2021). Simultaneous removal of colorless micropollutants and hexavalent chromium by pristine TiO2 under visible light: An electron transfer mechanism. Chemical Engineering Journal, 405, 126968. DOI: 10.1016/j.cej.2020.126968
  61. Sun, Q., Li, H., Niu, B., Hu, X., Xu, C., Zheng, S.(2015). Nano-TiO2 immobilized on diatomite: Characterization and photocatalytic reactivity for Cu2+ removal from aqueous solution. Procedia Engineering, 102, 1935–1943. DOI: 10.1016/j.proeng.2015.01.334
  62. Liu, M., Yin, W., Qian, F.J., Zhao, T.L., Yao, Q.Z., Fu, S.Q., Zhou, G.T. (2020). A novel synthesis of porous TiO2nanotubes and sequential application to dye contaminant removal and Cr(VI) visible light catalytic reduction. Journal of Environmental Chemical Engineering, 8, 104061. DOI: 10.1016/j.jece.2020.104061
  63. Fuziki, M.E.K., Brackmann, R., Dias, D.T., Tusset, A.M., Specchia, S., Lenzi, G.G. (2021). Effects of synthesis parameters on the properties and photocatalytic activity of the magnetic catalyst TiO2/CoFe2O4 applied to selenium photoreduction. Journal of Water Process Engineering, 42, 102163. DOI: 10.1016/j.jwpe.2021.102163
  64. Rathna, T., Ettiyappan, J.B.P., Sudhakar, D.R. (2021). Fabrication of visible-light assisted TiO2-WO3-PANI membrane for effective reduction of chromium (VI) in a photocatalytic membrane reactor. Environmental Technology & Innovation, 24, 102023. DOI: 10.1016/j.eti.2021.102023
  65. Kanakaraju, D., Mohamad Shahdad, N.R., Lim, Y.C., Pace, A. (2019). Concurrent removal of Cr(III), Cu(II), and Pb(II) ions from water by multifunctional TiO2/Alg/FeNPs beads. Sustainable Chemistry and Pharmacy, 14, 100176. DOI: 10.1016/j.scp.2019.100176
  66. Fontana, K.B., Lenzi, G.G., Seára, E.C.R., Chaves, E.S. (2018). Comparision of photocatalysis and photolysis processes for arsenic oxidation in water. Ecotoxicology and Environmental Safety, 151, 127-131. DOI: 10.1016/j.ecoenv.2018.01.001
  67. Rauf, M.A., Qadri, S.M., Ashraf, S., Al-Mansoori, K.M. (2009). Adsorption studies of Toluidine Blue from aqueous solutions onto gypsum. Chemical Engineering Journal, 150(1) 90-95. DOI: 10.1016/j.cej.2008.12.008
  68. Riera-Torres, M., Gutiérrez-Bouzán, C., Crespi, M. (2010). Combination of coagulation–flocculation and nanofiltration techniques for dye removal and water reuse in textile effluents. Desalination, 252, 53-59. DOI: 10.1016/j.desal.2009.11.002
  69. Shakir, K., Elkafrawy, A.F., Ghoneimy, H.F., Elrab Beheir, S.G., Refaat, M. (2010). Removal of rhodamine B (a basic dye) and thoron (an acidic dye) from dilute aqueous solutions and wastewater simulants by ion flotation. Water Research, 44, 1449-1461. DOI: 10.1016/j.watres.2009.10.029
  70. Zodi, S., Potier, O., Lapicque, F., Leclerc, J.-P. (2010). Treatment of the industrial wastewaters by electrocoagulation: Optimization of coupled electrochemical and sedimentation processes. Desalination, 261(1), 186-190. DOI: 10.1016/j.desal.2010.04.024
  71. Rauf, M.A., Ashraf, S.S. (2009) Application of Advanced Oxidation Processes (AOP) to dye degradation-an overview, in Arnold R. Lang (Ed.), Dyes and Pigments: New Research, Nova Science Publishers, Inc, ISBN 978-1-60692-027-5
  72. Al-Hamedi, F.H., Rauf, M.A., Ashraf, S.S. (2009). Degradation studies of Rhodamine B in the presence of UV/H2O2. Desalination, 239, 159-166. DOI: 10.1016/j.desal.2008.03.016
  73. Bouasla, C., Samar, M.E.-H., Ismail, F. (2010). Degradation of methyl violet 6B dye by the Fenton process. Desalination, 254, 35-41. DOI: 10.1016/j.desal.2009.12.017
  74. Abdessalem, A.K., Bellakhal, N., Oturan, N., Dachraoui, M., Oturan, M.A. (2010). Treatment of a mixture of three pesticides by photo- and electro-Fenton processes. Desalination, 250(1), 450-455. DOI: 10.1016/j.desal.2009.09.072
  75. Tehrani-Bagha, A.R., Mahmoodi, N.M., Menger, F.M. (2010). Degradation of a persistent organic dye from colored textile wastewater by ozonation. Desalination, 260, 34-38. DOI: 10.1016/j.desal.2010.05.004
  76. Song, S., Ying, H., He, Z., Chen, J. (2007). Mechanism of decolorization and degradation of CI Direct Red 23 by ozonation combined with sonolysis. Chemosphere, 66(9), 1782-1788. DOI: 10.1016/j.chemosphere.2006.07.090
  77. Bukallah, S.B., Rauf, M.A., Ashraf, S.S. (2007). Photocatalytic decoloration of Coomassie Brilliant Blue with titanium oxide. Dyes and Pigments, 72(3), 353-356. DOI: 10.1016/j.dyepig.2005.09.016
  78. Ayed, L., Chaieb, K., Cheref, A., Bakhrouf, A. (2010). Biodegradation and decolorization of triphenylmethane dyes by Staphylococcus epidermidis. Desalination, 260(1-3), 137-146. DOI: 10.1016/j.desal.2010.04.052
  79. Chen, Y.-P., Liu, S.-Y., Yu, H.-Q., Yin, H., Li, Q.-R. (2008). Radiation-induced degradation of methyl orange in aqueous solutions. Chemosphere, 72(4), 532-536. DOI: 10.1016/j.chemosphere.2008.03.054
  80. Gogate, P.R., Pandit, A.B. (2004). A review of imperative technologies for wastewater treatment Dihybrid methods. Advances in Environmental Research, 8(3–4), 501–551. DOI: 10.1016/S1093-0191(03)00032-7
  81. Oller, I., Malato, S., Sanchez-Perez, J.A. (2011). Combination of advanced oxidation processes and biological treatments for wastewater decontamination—a review. Science of the Total Environment, 409(20), 4141-4166. DOI: 10.1016/j.scitotenv.2010.08.061
  82. Gupta, V.K., Ali, I., Saleh, T.A., Nayak, A., Agarwal, S. (2012). Chemical treatment technologies for waste-water recycling—an overview. RSC Advances, 2, 6380-6388. DOI: 10.1039/C2RA20340E
  83. Khan, M.M., Pradhan, D., Sohn, Y. (2017). Nanocomposites for Visible Light-induced Photocatalysis, Springer Series on Polymer and Composite Materials. Springer Cham. DOI: 10.1007/978-3-319-62446-4
  84. Rehman, S., Ullah, R., Butt, A.M., Gohar, N.D. (2009). Strategies of making TiO2 and ZnO visible light active. Journal of Hazardous Material, 170(2–3), 560-569. DOI: 10.1016/j.jhazmat.2009.05.064
  85. Gnanaprakasam A., Sivakumar V.M., Thirumarimurugan M. (2015). Influencing Parameters in the Photocatalytic Degradation of Organic Effluent via Nanometal Oxide Catalyst: A Review. Indian Journal of Materials Science, 2015, 601827. DOI: 10.1155/2015/601827
  86. Yerga, R.M.N., Alvarez, M.C., Galvan, F.D.V., Mano, J.A.V.D.L., Fierro, J.L.G. (2009). Water Splitting on Semiconductor Catalysts under Visible-Light Irradiation. ChemSusChem, 2(6), 471-85. DOI: 10.1002/cssc.200900018
  87. Bessegato, G.G., Guaraldo, T.T., Zanoni, M.V.B. (2014). Enhancement of Photoelectrocatalysis Efficiency by Using Nanostructured Electrodes. In M. Aliofkhazraei, Modern Electrochemical Methods in Nano, Surface and Corrosion Science. DOI: 10.5772/58333
  88. Chen, D., Wang, J., Chen, T., Shao, L. (2013). Defect annihilation at grain boundaries in alpha-Fe. Scientific Reports, 3, 1450. DOI: 10.1038/srep01450
  89. Anpo, M. (2000). Use of visible light. Second-generation titanium dioxide photocatalysts are prepared by the application of an advanced metal ion-implantation method. Pure and Applied Chemistry, 72(9), 1787–1792. DOI: 10.1351/pac200072091787
  90. Chan, S.H.S., Wu, T.Y., Juan, J.C., The, C.Y. (2011). Recent developments of metal oxide semiconductors as photocatalysts in advanced oxidation processes (AOPs) for treatment of dye wastewater. Journal of Chemical Technology Biotechnology, 86(9), 1130-1158. DOI: 10.1002/jctb.2636
  91. Djurisic, A.B., Leung, Y.H., Ng, A.M.C. (2014). Strategies for improving the efficiency of semiconductor metal oxide photocatalysis. Materials Horizons, 1, 400-410. DOI: 10.1039/C4MH00031E
  92. Chonga, M.N., Jina, B., Chowc, C.W.K., Saint, C. (2010). Recent developments in photocatalytic water treatment technology: A review, Water Research, 44(10), 2997-3027. DOI: 10.1016/j.watres.2010.02.039
  93. Fujishima, A., Honda, K. (1972). Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 238, 37–38. DOI: 10.1038/238037a0
  94. Hoffmann, R.M., Martin, S.T., Choi, W., Bahnemann, D.W. (1995). Environmental Applications of Semiconductor Photocatalysis. Chemical Reviews, 95, 69–96. DOI: 10.1021/cr00033a004
  95. Hoare, J.P. (1974). Encyclopedia of Electrochemistry. In Bard, A.J., Ed.;Marcel Dekkar: Encyclopedia of Electrochemistry of the Elements New York, p 191
  96. Sobczyński, A., Dobosz, A. (2001). Speciation of heavy metals in bottom sediments of lakes in the area of Wielkopolski National Park. Polish Journal of Environmental Studies, 10(6), 463–474
  97. Linsebigler, A.L., Lu, G., Yates Jr, J.T. (1995). Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chemical Reviews, 95, 735–758. DOI: 10.1021/cr00035a013
  98. Konstantinou, I.K., Albanis, T.A. (2004). TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Applied Catalysis B: Environmental, 49, 1-14. DOI: 10.1016/j.apcatb.2003.11.010
  99. Ishibashia, K.-I., Fujishimaa, A., Watanabea, T., Hashimoto, K. (2000). Quantum Yields of Active Oxidative Species Formed on TiO2 Photocatalyst. Journal of Photochemistry and Photobiology A: Chemistry, 134(1-2), 139-142. DOI: 10.1016/S1010-6030(00)00264-1
  100. Akpan, U.G., Hameed, B.H. (2009). Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: A review. Journal of Hazardous Materials, 170(2-3), 520-529. DOI: 10.1016/j.jhazmat.2009.05.039
  101. Carp, O., Huisman, C.L., Reller, A. (2004). Photoinduced reactivity of titanium dioxide. Progress in Solid State Chemistry, 32(1-2). 33-177. DOI: 10.1016/j.progsolidstchem.2004.08.001
  102. Ding, Z., Lu, G.Q., Greenfield, P.F. (2000). Role of the crystallite phase of TiO2 in heterogeneous photocatalysis for phenol oxidation in water. The Journal of Physical Chemistry B, 104, 4815–4820. DOI: 10.1021/jp993819b
  103. Devi, L.G., Kavitha, R. (2013). A review on non-metal ion doped titania for the photocatalytic degradation of organic pollutants under UV/solar light: Role of photogenerated charge carrier dynamics in enhancing the activity. Applied Catalysis B: Environmental, 140-141, 559-558. DOI: 10.1016/j.apcatb.2013.04.035
  104. Khan, A., Mir, N.A., Faisal, M., Muneer, M. (2012). Titanium Dioxide-Mediated Photocatalysed Degradation of Two Herbicide Derivatives Chloridazon and Metribuzin in Aqueous Suspensions. International Journal of Chemical Engineering, 2012, 850468. DOI: 10.1155/2012/850468
  105. Malato, S., Fernández-Ibáñez, P., Maldonado, M.I., Blanco, J., Gernjak, W. (2009). Decontamination, and disinfection of water by solar photocatalysis: Recent overview and trends. Catalysis Today, 147(1), 1-59. DOI: 10.1016/j.cattod.2009.06.018
  106. Poznyak, S.K., Kokorin, A.I., Kulak, A.I. (1998). Effect of electron and hole acceptors on the photoelectrochemical behavior of nanocrystalline microporous TiO2 electrodes. Journal of Electroanalytical Chemistry, 442(1-2), 99-105. DOI: 10.1016/S0022-0728(97)00458-0
  107. Miyauchi, M., Nakajima, A., Hashimoto, K., Watanabe, T. (2000). A highly hydrophilic thin film under 1 μW/cm2 UV illumination. Advanced Materials, 12(24), 1923–1927. DOI: 10.1002/1521-4095(200012)12:24<1923::AID-ADMA1923>3.0.CO;2-%23
  108. Lee, H.U., Lee, S.C., Choi, S., Son, B., Kim, H., Lee, S.M., Kim, H.J., Lee, J. (2013). Influence of visible-light irradiation on physicochemical and photocatalytic properties of nitrogen-doped three-dimensional (3D) titanium dioxide. Journal of Hazardous Materials, 258-259, 10-18. DOI: 10.1016/j.jhazmat.2013.04.028
  109. Li, M. (2013). The research and development of Fe doped TiO2. Research of Materials Science, 2(2), 28-33
  110. Beata, T., Magdalena, W., Grzegorz, Z., Guskos, N., Morawski, A., Colbeau, J.A., Wrobel, R., Nitta, A., Ohtani, B. (2018). Influence of an Electronic Structure of N-TiO2 on Its Photocatalytic Activity towards Decomposition of Acetaldehyde under UV and Fluorescent Lamps Irradiation. Catalysts, 8, 85. DOI: 10.3390/catal8020085
  111. Rajeshwar, K., Osugi, M.E., Chanmanee, W., Chenthamarakshan, C.R., Zanoni, M., Kajitvichyanukul, P., Krishnan-Ayer, R. (2008). Heterogeneous photocatalytic treatment of organic dyes in air and aqueous media. Journal of Photochemical Photobiology C, 9(4), 171-192. DOI: 10.1016/j.jphotochemrev.2008.09.001
  112. Rehman, S., Ullah, R., Butt, A.M., Gohar, N.D. (2009). Strategies of making TiO2 and ZnO visible light active. Journal of Hazardous Material, 170(2-3), 560-569. DOI: 10.1016/j.jhazmat.2009.05.064
  113. Hunter, A., Renfrew, M.M. (1999). Reactive Dyes for Textile Fibres: The Chemistry of Activated [pi]-bonds as Reactive Groups and Miscellaneous Topics, Society of Dyers and Colourists, ISBN: 9780901956750, 0901956759
  114. Lam, S.-M., Sin, J.-C., Abdullah, A.Z., Mohamed, A.R. (2012). Degradation of wastewaters containing organic dyes photocatalysed by zinc oxide: a review. Desalination and Water Treatment, 41(1-3), 131-169. DOI: 10.1080/19443994.2012.664698
  115. Dhanalakshmi, M., Saravanakumar, K., Prabavathi, S.L. Muthuraj, V. (2020). Iridium doped ZnO nanocomposites: Synergistic effect induced photocatalytic degradation of methylene blue and crystal violet. Inorganic Chemistry Communications, 111, 107601. DOI: 10.1016/j.inoche.2019.107601
  116. Parmon, V.N. (1997). Photocatalysis as a phenomenon: Aspects of terminology. Catalysis Today, 39, 137-144. DOI: 10.1016/S0920-5861(97)00095-3
  117. Anpo, M. (2000). Utilization of TiO2 photocatalysts in green chemistry. Pure and Applied Chemistry, 72(7), 1265–1270. DOI: 10.1351/pac200072071265
  118. Zaleska, A. (2008). Doped-TiO2: A review. Recent Patents on Engineering, 2(3), 157-164. DOI: 10.2174/187221208786306289
  119. Litter, M.I. (1999). Heterogeneous photocatalysis - Transition metal ions in photocatalytic systems. Applied Catalysis B: Environmental, 23(2-3), 89-114. DOI: 10.1016/S0926-3373(99)00069-7
  120. Kamat, P.V. (1993). Photochemistry on nonreactive and reactive (semiconductor) surfaces. Chemical Reviews, 93, 267-300. DOI: 10.1021/cr00017a013
  121. Tian, H., Maa, J., Li, K., Li, J. (2008). Photocatalytic degradation of methyl orange with W-doped TiO2 synthesized by a hydrothermal method. Materials Chemistry and Physics, 112, 47-51. DOI: 10.1016/j.matchemphys.2008.05.005
  122. Kogo, A., Sakai, N., Tatsuma, T. (2010). Photocatalysis of Au25-modified TiO2 under visible and near infrared light. Electrochemistry Communications, 12, 996-999. DOI: 10.1016/j.elecom.2010.05.021
  123. Liu, C.-J., Yang, T.-Y., Wang, C.-H., Chien, C.-C., Chen, S.-T., Wang, C.-L., Leng, W.-H., Hwu, Y., Lin, H.-M., Lee, Y.-C., Cheng, C.-L., Je, J.H., Margaritondo, G. (2009). Enhanced photocatalysis, colloidal stability and cytotoxicity of synchrotron X-ray synthesized Au/TiO2 nanoparticles. Materials Chemistry and Physics, 117, 74-79. DOI: 10.1016/j.matchemphys.2009.05.030
  124. Sobana, N., Selvam, K., Swaminathan, M. (2008). Optimization of photocatalytic degradation conditions of Direct Red 23 using nano-Ag doped TiO2. Separation and Purification Technology, 62, 648-653. DOI: 10.1016/j.seppur.2008.03.002
  125. Sung-Suh, H.M., Choi, J.R., Hah, H.J., Koo, S.M., Bae, Y.C. (2004). Comparison of Ag deposition effects on the photocatalytic activity of nanoparticulate TiO2 under visible and UV light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 163, 37–44. DOI: 10.1016/S1010-6030(03)00428-3
  126. Li, X.Z., Li, F.B. (2001). Study of Au/Au3+-TiO2 Photocatalysts toward Visible Photooxidation for Water and Wastewater Treatment. Environmental Science & Technology, 35(11), 2381-2387. DOI: 10.1021/es001752w
  127. Yang, J., Li, D., Zhang, Z., Li, Q., Wang, H. (2000). A study of the photocatalytic oxidation of formaldehyde on Pt/Fe2O3/TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 137, 197-202. DOI: 10.1016/S1010-6030(00)00340-3
  128. Xu, A.W., Gao, Y., Liu, H.Q. (2002). The Preparation, Characterization, and their Photocatalytic Activities of Rare-Earth-Doped TiO2 Nanoparticles. Journal of Catalysis, 207(2), 151-157. DOI: 10.1006/jcat.2002.3539

Last update:

No citation recorded.

Last update:

No citation recorded.