Comparison of Five Advanced Oxidation Processes for Degradation of Pesticide in Aqueous Solution

Copyright (c) 2018 Bulletin of Chemical Reaction Engineering & Catalysis
License URL:
Cover Image

Article Metrics: (Click on the Metric tab below to see the detail)

Article Info
Submitted: 26-07-2017
Published: 02-04-2018
Section: The International Conference on Fluids and Chemical Engineering (FluidsChE 2017)
Fulltext PDF Tell your colleagues Email the author

The study compared the technical efficiency and economic cost of five advanced oxidation processes (Fenton, UV photo-Fenton, solar photo-Fenton, UV/TiO2/H2O2 and FeGAC/H2O2) for degradation of the pesticides chlorpyrifos cypermethrin and chlorothalonil in aqueous solution. The highest degradation in terms of COD and TOC removals and improvement of the biodegradability (BOD5/COD ratio) index (BI) were observed to be (i) Fenton - 69.03% (COD), 55.61% (TOC), and 0.35 (BI); (ii) UV photo-Fenton -78.56% (COD), 63.76% (TOC) and 0.38 (BI);  (iii) solar photo-Fenton - 74.19% (COD), 58.32% (TOC) and 0.36 (BI); (iv) UV/TiO2/H2O2 - 53.62% (COD), 21.54% (TOC), and 0.26 (BI); and  (v) the most technical efficient and cost effective process was FeGAC/H2O2. At an optimum condition (FeGAC 5 g/L, H2O2 100 mg/L, and reaction time of 60 min at pH 3), the COD and TOC removal efficiency were 96.19 and 85.60%, respectively, and the biodegradation index was 0.40. The degradation rate constant and cost were 0.0246 min-1 and $0.74/kg TOC, respectively. The FeGAC/H2O2 process is the most technically efficient and cost effective for pretreatment of the pesticide wastewater before biological treatment. Copyright © 2018 BCREC Group. All rights reserved

Received: 26th July 2017; Revised: 26nd September 2017; Accepted: 27th September 2017; Available online: 22nd January 2018; Published regularly: 2nd April 2018

How to Cite: Affam, A.C., Chaudhuri, M., Kutty, S.R.M. (2018). Comparison of Five Advanced Oxidation Processes for Degradation of Pesticide in Aqueous Solution. Bulletin of Chemical Reaction Engineering & Catalysis, 13 (1): 179-186 (doi:10.9767/bcrec.13.1.1394.179-186)



Fenton; UV photo-Fenton; Solar photo-Fenton; UV/TiO2/H2O2; FeGAC/H2O2; Pesticide; biodegradability index (BI)

  1. Augustine Chioma Affam 
    Department of Civil Engineering, School of Engineering and Technology, University College of Technology Sarawak, 96000, Sibu, Sarawak, Malaysia
  2. Malay Chaudhuri 
    Department of Civil Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak, Malaysia
  3. Shamsul Rahman M. Kutty 
    Department of Civil Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak, Malaysia
  1. Oller, I., Malato, S., Sánchez-Pérez, J.A. (2010). Review: Combination of advanced oxidation processes and biological treatments for wastewater decontamination - A review, Science of The Total Environment, 409(20): 4141-4166 (doi:10.1016/j.scitotenv.2010.08.061)
  2. Chamarro, E., Marco, A., Esplugas, S. (2001). Use of Fenton reagent to improve organic biodegradability, Water Research, 35 (4)1047-1051 (doi:10.1016/S0043-1354(00)00342-0)
  3. Pignatello, J.J., Liu, D., Houston, P. (1999) Evidence for an additional oxidant in the photo assisted Fenton reaction, Environmental Science & Technology 33(11): 1832-1839. (doi:10.1021/es980969b)
  4. Lorret, O., Francová, D., Waldner, G., Stelzer Stelzer, N. (2009). W-doped titania nanoparticles for UV and visible-light photocatalytic reactions. Appl. Catal. B 91(1-2): 39-46 (doi:10.1016/j.apcatb.2009.05.005
  5. Pekakis, P.A., Xekoukoulotakis, N.P., Mantzavinos, D. (2006). Treatment of textile dyehouse wastewater by TiO2 photocatalysis, Water Research, 40(6): 1276-1286. (doi:10.1016/j.watres.2006.01.019)
  6. Sadik, W.A., Nashed, A.W., El-Demerdash, A.G.M. (2007). Photodecolourization of ponceau 4R by heterogeneous photocatalysis, Journal of Photochemical & Photobiology A. 189(1):135-140
  7. Fan, H., Shua, H., Tajima, K. (2006). Decolorization of acid black 24 by the FeGAC/H2O2 process, Journal of Hazardous Materials, 128(2-3): 192-200
  8. APHA, AWWA, WPCF, Standard Methods for the Examination of Water and Wastewater, 21st ed. American Public Health Association, Washington, DC, 2005.
  9. Talinli, I., Anderson, G.K. (1992). Interference of hydrogen peroxide on the standard COD test, Water Research, 26(1): 107-110 (doi:10.1016/0043-1354(92)90118-N)
  10. Kang, Y.W., Cho, M.J. Hwang, K.Y. (1999). Correction of hydrogen peroxide interference on standard chemical oxygen demand test, Water Research, 33(5): 1247-1251 (doi:10.1016/S0043-1354(98)00315-7)
  11. Hach. (2002). Water Analysis Handbook (4th Edition.) Loveland, CO: Hach Company.
  12. Lu, C., Liu, C., Rao, G. P. (2008) Comparisons of sorbent cost for the removal of Ni2+ from aqueous solution by carbon nanotubes and granular activated carbon, Journal of Hazardous Materials, 151(1): 239-246 (doi:10.1016/j.jhazmat.2007.05.078)
  13. Cañizares, P., Paz, R., Sáez, C., Rodrigo, M.A. (2009). Costs of the electrochemical oxidation of wastewaters: A comparison with ozonation and Fenton oxidation processes, Journal of Environmental Management, 90(1): 410-420
  14. (doi:10.1016/j.jenvman.2007.10.010)
  15. Körbahti, B., Artut, K. (2010). Electrochemical oil/water demulsification and purification of bilge water using Pt/Ir electrodes. Desalination 258: 219-228.
  16. Affam, A.C., Chaudhuri, M., Kutty, S.R.M.(2012). Fenton treatment of combined Chlorpyrifos, cypermethrin and chlorothalonil pesticides in aqueous solution, Journal of Environmental Science Technology, 5(6): 407- 418 (doi:10.3923/jest.2012.407.418)
  17. Abderrazik, N.B., Al Momani, F., Sans, C., Esplugas S. (2002). Combined advanced oxi-dation with biological treatment. Afinidad -Barcelona 59(498): 141-146.
  18. Martín M.M.B., Pérez, J.A.S., López, J.LC. Oller, I., Rodríguez, S.M.M. (2009). Degradation of a four-pesticide mixture by combined photo-Fenton and biological oxidation, Water Research. 43(3): 653-660. (doi:10.1016/j.watres.2008.11.020)
  19. Scott, J.P., Ollis, D.F. (1995). Integration of chemical and biological oxidation processes for water treatment: Review and recommendation Environmental Progress & Sustainable Energy, 14(2): 88-103 (doi: 10.1002/ep.670140212)
  20. Shen, Y.S., Ku, Y., Lee, K.C. (1995). The effect of light absorbance on the decomposition of chlorophenols by ultraviolet radiation and UV/H2O2 processes, Water Research, 29 (3) 907-914 (doi:10.1016/0043-1354(94)00198-G)
  21. Zhang, Y., Xiao, Z., Chen, F., Ge, Y., Wu, J., Hu, X.(2010). Degradation behavior and products of malathion and chlorpyrifos spiked in apple juice by ultrasonic treatment, Ultrasonics Sonochemistry, 17(1): 72-77. (doi: 10.1016/j.ultsonch.2009.06.003)
  22. Bansal, R.C., Donnet, J.B., Stoeckli, F. (1998). Active Carbon. New York: Marcel Dekker.
  23. Andreozzi, R., Caprio, V., Insola, A., Marotta, R. (1999). Advanced oxidation processes (AOP) for water purification and recovery, Catalysis Today. 53(1): 51-59 doi:10.1016/S0920-5861(99)00102-9
  24. Integra Chemical, assessed on 1st January, 2013.