Comparison of Five Advanced Oxidation Processes for Degradation of Pesticide in Aqueous Solution

*Augustine Chioma Affam  -  Department of Civil Engineering, School of Engineering and Technology, University College of Technology Sarawak, 96000, Sibu, Sarawak, Malaysia
Malay Chaudhuri  -  Department of Civil Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak, Malaysia
Shamsul Rahman M. Kutty  -  Department of Civil Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak, Malaysia
Received: 26 Jul 2017; Revised: 26 Sep 2017; Accepted: 27 Sep 2017; Published: 2 Apr 2018; Available online: 22 Jan 2018.
Open Access Copyright (c) 2018 Bulletin of Chemical Reaction Engineering & Catalysis
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image
Abstract

The study compared the technical efficiency and economic cost of five advanced oxidation processes (Fenton, UV photo-Fenton, solar photo-Fenton, UV/TiO2/H2O2 and FeGAC/H2O2) for degradation of the pesticides chlorpyrifos cypermethrin and chlorothalonil in aqueous solution. The highest degradation in terms of COD and TOC removals and improvement of the biodegradability (BOD5/COD ratio) index (BI) were observed to be (i) Fenton - 69.03% (COD), 55.61% (TOC), and 0.35 (BI); (ii) UV photo-Fenton -78.56% (COD), 63.76% (TOC) and 0.38 (BI);  (iii) solar photo-Fenton - 74.19% (COD), 58.32% (TOC) and 0.36 (BI); (iv) UV/TiO2/H2O2 - 53.62% (COD), 21.54% (TOC), and 0.26 (BI); and  (v) the most technical efficient and cost effective process was FeGAC/H2O2. At an optimum condition (FeGAC 5 g/L, H2O2 100 mg/L, and reaction time of 60 min at pH 3), the COD and TOC removal efficiency were 96.19 and 85.60%, respectively, and the biodegradation index was 0.40. The degradation rate constant and cost were 0.0246 min-1 and $0.74/kg TOC, respectively. The FeGAC/H2O2 process is the most technically efficient and cost effective for pretreatment of the pesticide wastewater before biological treatment. Copyright © 2018 BCREC Group. All rights reserved

Received: 26th July 2017; Revised: 26nd September 2017; Accepted: 27th September 2017; Available online: 22nd January 2018; Published regularly: 2nd April 2018

How to Cite: Affam, A.C., Chaudhuri, M., Kutty, S.R.M. (2018). Comparison of Five Advanced Oxidation Processes for Degradation of Pesticide in Aqueous Solution. Bulletin of Chemical Reaction Engineering & Catalysis, 13 (1): 179-186 (doi:10.9767/bcrec.13.1.1394.179-186)

 

Keywords: Fenton; UV photo-Fenton; Solar photo-Fenton; UV/TiO2/H2O2; FeGAC/H2O2; Pesticide; biodegradability index (BI)

Article Metrics:

  1. Oller, I., Malato, S., Sánchez-Pérez, J.A. (2010). Review: Combination of advanced oxidation processes and biological treatments for wastewater decontamination - A review, Science of The Total Environment, 409(20): 4141-4166 (doi: 10.1016/j.scitotenv.2010.08.061)
  2. Chamarro, E., Marco, A., Esplugas, S. (2001). Use of Fenton reagent to improve organic biodegradability, Water Research, 35 (4)1047-1051 (doi: 10.1016/S0043-1354(00)00342-0)
  3. Pignatello, J.J., Liu, D., Houston, P. (1999) Evidence for an additional oxidant in the photo assisted Fenton reaction, Environmental Science & Technology 33(11): 1832-1839. (doi: 10.1021/es980969b)
  4. Lorret, O., Francová, D., Waldner, G., Stelzer Stelzer, N. (2009). W-doped titania nanoparticles for UV and visible-light photocatalytic reactions. Appl. Catal. B 91(1-2): 39-46 (doi: 10.1016/j.apcatb.2009.05.005
  5. Pekakis, P.A., Xekoukoulotakis, N.P., Mantzavinos, D. (2006). Treatment of textile dyehouse wastewater by TiO2 photocatalysis, Water Research, 40(6): 1276-1286. (doi: 10.1016/j.watres.2006.01.019)
  6. Sadik, W.A., Nashed, A.W., El-Demerdash, A.G.M. (2007). Photodecolourization of ponceau 4R by heterogeneous photocatalysis, Journal of Photochemical & Photobiology A. 189(1):135-140
  7. Fan, H., Shua, H., Tajima, K. (2006). Decolorization of acid black 24 by the FeGAC/H2O2 process, Journal of Hazardous Materials, 128(2-3): 192-200
  8. APHA, AWWA, WPCF, Standard Methods for the Examination of Water and Wastewater, 21st ed. American Public Health Association, Washington, DC, 2005
  9. Talinli, I., Anderson, G.K. (1992). Interference of hydrogen peroxide on the standard COD test, Water Research, 26(1): 107-110 (doi: 10.1016/0043-1354(92)90118-N)
  10. Kang, Y.W., Cho, M.J. Hwang, K.Y. (1999). Correction of hydrogen peroxide interference on standard chemical oxygen demand test, Water Research, 33(5): 1247-1251 (doi: 10.1016/S0043-1354(98)00315-7)
  11. Hach. (2002). Water Analysis Handbook (4th Edition.) Loveland, CO: Hach Company
  12. Lu, C., Liu, C., Rao, G. P. (2008) Comparisons of sorbent cost for the removal of Ni2+ from aqueous solution by carbon nanotubes and granular activated carbon, Journal of Hazardous Materials, 151(1): 239-246 (doi: 10.1016/j.jhazmat.2007.05.078)
  13. Cañizares, P., Paz, R., Sáez, C., Rodrigo, M.A. (2009). Costs of the electrochemical oxidation of wastewaters: A comparison with ozonation and Fenton oxidation processes, Journal of Environmental Management, 90(1): 410-420
  14. (doi: 10.1016/j.jenvman.2007.10.010)
  15. Körbahti, B., Artut, K. (2010). Electrochemical oil/water demulsification and purification of bilge water using Pt/Ir electrodes. Desalination 258: 219-228
  16. Affam, A.C., Chaudhuri, M., Kutty, S.R.M.(2012). Fenton treatment of combined Chlorpyrifos, cypermethrin and chlorothalonil pesticides in aqueous solution, Journal of Environmental Science Technology, 5(6): 407- 418 (doi: 10.3923/jest.2012.407.418)
  17. Abderrazik, N.B., Al Momani, F., Sans, C., Esplugas S. (2002). Combined advanced oxi-dation with biological treatment. Afinidad -Barcelona 59(498): 141-146
  18. Martín M.M.B., Pérez, J.A.S., López, J.LC. Oller, I., Rodríguez, S.M.M. (2009). Degradation of a four-pesticide mixture by combined photo-Fenton and biological oxidation, Water Research. 43(3): 653-660. (doi: 10.1016/j.watres.2008.11.020)
  19. Scott, J.P., Ollis, D.F. (1995). Integration of chemical and biological oxidation processes for water treatment: Review and recommendation Environmental Progress & Sustainable Energy, 14(2): 88-103 (doi: 10.1002/ep.670140212)
  20. Shen, Y.S., Ku, Y., Lee, K.C. (1995). The effect of light absorbance on the decomposition of chlorophenols by ultraviolet radiation and UV/H2O2 processes, Water Research, 29 (3) 907-914 (doi: 10.1016/0043-1354(94)00198-G)
  21. Zhang, Y., Xiao, Z., Chen, F., Ge, Y., Wu, J., Hu, X.(2010). Degradation behavior and products of malathion and chlorpyrifos spiked in apple juice by ultrasonic treatment, Ultrasonics Sonochemistry, 17(1): 72-77. (doi: 10.1016/j.ultsonch.2009.06.003)
  22. Bansal, R.C., Donnet, J.B., Stoeckli, F. (1998). Active Carbon. New York: Marcel Dekker
  23. Andreozzi, R., Caprio, V., Insola, A., Marotta, R. (1999). Advanced oxidation processes (AOP) for water purification and recovery, Catalysis Today. 53(1): 51-59 doi: 10.1016/S0920-5861(99)00102-9
  24. Integra Chemical, http://www.integrachem.com/product_catalog_search.asp assessed on 1st January, 2013

Last update: 2021-04-20 07:32:02

No citation recorded.

Last update: 2021-04-20 07:32:03

  1. Photo-Fenton disinfection at near neutral pH: Process, parameter optimization and recent advances

    O'Dowd K.. Journal of Environmental Chemical Engineering, 8 (5), 2020. doi: 10.1016/j.jece.2020.104063
  2. Hazard assessment using an in-silico toxicity assessment of the transformation products of boscalid, pyraclostrobin, fenbuconazole and glyphosate generated by exposure to an advanced oxidative process

    Skanes B.. Toxicology in Vitro, 70 , 2021. doi: 10.1016/j.tiv.2020.105049
  3. Removal of the heavy metal ion nickel (II) via an adsorption method using flower globular magnesium hydroxide

    Jiang D.. Journal of Hazardous Materials, 127 , 2019. doi: 10.1016/j.jhazmat.2019.01.096
  4. Tracking the degradation pathway of three model aqueous pollutants in a heterogeneous Fenton process

    Cohen M.. Journal of Environmental Chemical Engineering, 7 (2), 2019. doi: 10.1016/j.jece.2019.102987
  5. Recent advances on the removal of priority organochlorine and organophosphorus biorecalcitrant pesticides defined by Directive 2013/39/EU from environmental matrices by using advanced oxidation processes: An overview (2007-2018)

    Vagi M.C.. Journal of Environmental Chemical Engineering, 8 (1), 2020. doi: 10.1016/j.jece.2019.102940
  6. Self-assembling 2D/2D (MXene/LDH) materials achieve ultra-high adsorption of heavy metals Ni2+ through terminal group modification

    Feng X.. Separation and Purification Technology, 127 , 2020. doi: 10.1016/j.seppur.2020.117525
  7. Pilot-plant scaled water treatment technologies, standards for the removal of contaminants of emerging concern based on photocatalytic materials

    Veréb G.. Advanced Nanostructures for Environmental Health: Micro and Nano Technologies, 2019. doi: 10.1016/B978-0-12-815882-1.00012-4
  8. Cultivating microalgae in wastewater for biomass production, pollutant removal, and atmospheric carbon mitigation; a review

    Shahid A.. Science of the Total Environment, 127 , 2020. doi: 10.1016/j.scitotenv.2019.135303
  9. Effect of Ag and Mn doping for methylene blue photodegradation performance

    Jessica . IOP Conference Series: Materials Science and Engineering, 127 (1), 2021. doi: 10.1088/1757-899X/1011/1/012043