skip to main content

Nanocomposite ZnO/g-C3N4 for Improved Degradation of Dyes under Visible Light: Facile Preparation, Characterization, and Performance Investigations

School of Chemical Engineering, Hanoi University of Science and Technology, Hanoi, Viet Nam

Received: 24 Mar 2022; Revised: 12 May 2022; Accepted: 13 May 2022; Available online: 14 May 2022; Published: 30 Jun 2022.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2022 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image
Abstract

In this study, ZnO/g-C3N4 nanocomposites were prepared via a physical mixing-calcination process for improved degradation of dyes under visible light irradiation. The BET surface area, pore volume, crystal size, and pHpzc of the ZnO/g-C3N4 composite were 3.9 m2/g, 0.034 cm3/g, 18.1 nm, and 7.7, respectively. Although the morphology of the ZnO/g-C3N4 composite was very different from that of pure g-C3N4, their average pore sizes were similar. The Eg of the ZnO/g-C3N4 composite (3.195 eV) was slightly lower than that of ZnO (3.195) but much higher than that of g-C3N4 (2.875). The interface interaction of ZnO and g-C3N4, which was revealed by oscillations of Zn-C, benefited the transport of photoinduced charge carriers and reduced the recombination of electron-hole. As the result, the ZnO/g-C3N4 composite had higher photocatalytic activity than ZnO and g-C3N4. Its degradation efficiency (DE) value for methylene blue (MB) in 90 min and rate constant were 93.2 % and 0.025 min‑1, respectively. In addition, the effects of ZnO/urea molar ratio, catalyst dosage, solution pH, and concentration of dye on photocatalytic degradation of MB were completely investigated. The photocatalytic performance of the ZnO/g-C3N4 composite was evaluated by the degradation of other persistent organic compounds, also compared to other catalysts in the literatures. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Fulltext View|Download
Keywords: ZnO; g-C3N4; Composite; Photocatalyst; Dye
Funding: Vietnam National Foundation for Science and Technology Development (NAFOSTED) under contract 104.05-2018.333

Article Metrics:

  1. Pereira, L., Alves, M. (2012). Dyes—environmental impact and remediation. In Environmental protection strategies for sustainable development. Dordrecht: Springer
  2. Dixit, S., Yadav, A., Dwivedi, P. D., Das, M. (2015). Toxic hazards of leather industry and technologies to combat threat: a review. Journal of Cleaner Production, 87, 39-49. DOI: 10.1016/j.jclepro.2014.10.017
  3. Gallidabino, M., Weyermann, C., Marquis, R. (2011). Differentiation of blue ballpoint pen inks by positive and negative mode LDI-MS. Forensic Science International, 204 (1), 169-178. DOI: 10.1016/j.forsciint.2010.05.027
  4. Guerra, E., Llompart, M., Garcia-Jares, C. (2018). Analysis of dyes in cosmetics: challenges and recent developments. Cosmetics, 5 (3), 47. DOI: 10.3390/cosmetics5030047
  5. Oplatowska-Stachowiak, M., Elliott, C.T. (2017). Food colors: Existing and emerging food safety concerns. Critical Reviews in Food Science and Nutrition, 57 (3), 524-548. DOI: 10.1080/10408398.2014.889652
  6. Wainwright, M. (2011). 6 - Dyes for the medical industry. In M. Clark (Ed.), Handbook of Textile and Industrial Dyeing. Cambridge: Woodhead Publishing
  7. Ali, H. (2010). Biodegradation of synthetic dyes - a review. Water, Air, & Soil Pollution, 213 (1), 251-273. DOI: 10.1007/s11270-010-0382-4
  8. Ardila-Leal, L.D., Poutou-Piñales, R.A., Pedroza-Rodríguez, A.M., Quevedo-Hidalgo, B.E. (2021). A Brief History of Colour, the Environmental Impact of Synthetic Dyes and Removal by Using Laccases. Molecules, 26 (13). DOI: 10.3390/molecules26133813
  9. Kannan, N., Sundaram, M.M. (2001). Kinetics and mechanism of removal of methylene blue by adsorption on various carbons—a comparative study. Dyes and Pigments, 51 (1), 25-40. DOI: 10.1016/S0143-7208(01)00056-0
  10. Sarioglu, M., Atay, U. (2006). Removal of methylene blue by using biosolid. Global Nest J., 8(2), 113-120. DOI: 10.30955/gnj.000351
  11. Obotey Ezugbe, E., Rathilal, S. (2020). Membrane Technologies in Wastewater Treatment: A Review. Membranes, 10(5), 89. DOI: 10.3390/membranes10050089
  12. Karcher, S., Kornmüller, A., Jekel, M. (2002). Anion exchange resins for removal of reactive dyes from textile wastewaters. Water Research, 36 (19), 4717-4724. DOI: 10.1016/S0043-1354(02)00195-1
  13. Ennigrou, D.J., Gzara, L., Romdhane, M.R. B., Dhahbi, M. (2009). Cadmium removal from aqueous solutions by polyelectrolyte enhanced ultrafiltration. Desalination, 246 (1-3), 363-369. DOI: 10.1016/j.desal.2008.04.053
  14. Verma, A.K., Dash, R.R., Bhunia, P. (2012). A review on chemical coagulation / flocculation technologies for removal of colour from textile wastewaters. Journal of Environmental Management, 93 (1), 154-168. DOI: 10.1016/j.jenvman.2011.09.012
  15. Vu, A.-T., Xuan, T.N., Lee, C.-H. (2019). Preparation of mesoporous Fe2O3•SiO2 composite from rice husk as an efficient heterogeneous Fenton-like catalyst for degradation of organic dyes. Journal of Water Process Engineering, 28, 169-180. DOI: 10.1016/j.jwpe.2019.01.019
  16. Sivakumar, A., Murugesan, B., Loganathan, A., Sivakumar, P. (2014). A review on decolourisation of dyes by photodegradation using various bismuth catalysts. Journal of the Taiwan Institute of Chemical Engineers, 45 (5), 2300-2306. DOI: 10.1016/j.jtice.2014.07.003
  17. Fu, J., Yu, J., Jiang, C., Cheng, B. (2018). g‐C3N4‐Based heterostructure photocatalysts. Advanced Energy Materials, 8 (3), 1701503. DOI: 10.1002/aenm.201701503
  18. Fan, M., Li, T., Li, G., Ma, H., Zhao, S., Yang, K., Kränkel, C. (2017). Graphitic C3N4 as a new saturable absorber for the mid-infrared spectral range. Optics Letters, 42(2), 286-289. DOI: 10.1364/OL.42.000286
  19. Wang, X., Maeda, K., Thomas, A., Takanabe, K., Xin, G., Carlsson, J.M., Domen, K., Antonietti, M. (2009). A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nature Materials, 8 (1), 76-80. DOI: 10.1038/nmat2317
  20. Wang, Y., Wang, X., Antonietti, M. (2012). Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry. Angewandte Chemie International Edition, 51 (1), 68-89. DOI: 10.1002/anie.201101182
  21. Bhatia, S., Verma, N. (2017). Photocatalytic activity of ZnO nanoparticles with optimization of defects. Materials Research Bulletin, 95, 468-476. DOI: 10.1016/j.materresbull.2017.08.019
  22. Vu Anh, T., Pham, T.A.T., Mac, V.H., Nguyen, T.H. (2021). Facile Controlling of the Physical Properties of Zinc Oxide and Its Application to Enhanced Photocatalysis. Journal of Analytical Methods in Chemistry, 2021, 5533734. DOI: 10.1155/2021/5533734
  23. Lee, P.J., Saion, E., Al-Hada, N.M., Soltani, N. (2015). A Simple Up-Scalable Thermal Treatment Method for Synthesis of ZnO Nanoparticles. Metals, 5 (4). DOI: 10.3390/met5042383
  24. Pham, T.A.T., Tran, V.A., Le, V.D., Nguyen, M.V., Truong, D.D., Do, X.T., Vu, A.-T. (2020). Facile Preparation of ZnO Nanoparticles and Ag/ZnO Nanocomposite and Their Photocatalytic Activities under Visible Light. International Journal of Photoenergy, 2020, 8897667. DOI: 10.1155/2020/8897667
  25. Thomas, A., Fischer, A., Goettmann, F., Antonietti, M., Müller, J.-O., Schlögl, R., Carlsson, J.M. (2008). Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. Journal of Materials Chemistry, 18 (41), 4893-4908. DOI: 10.1039/B800274F
  26. De Graef, M., McHenry, M.E. (2012). Structure of materials: an introduction to crystallography, diffraction and symmetry. New York: Cambridge University Press
  27. Bojdys, M.J., Müller, J.O., Antonietti, M., Thomas, A. (2008). Ionothermal synthesis of crystalline, condensed, graphitic carbon nitride. Chemistry–A European Journal, 14 (27), 8177-8182. DOI: 10.1002/chem.200800190
  28. Blagden, N. (2001). Crystal engineering of polymorph appearance: the case of sulphathiazole. Powder Technology, 121 (1), 46-52. DOI: 10.1016/S0032-5910(01)00373-4
  29. Tiekink, E.R., Vittal, J.J. (2006). Frontiers in Crystal Engineering. Iowa: John Wiley & Sons
  30. Yarger, J.L., Wolf, G.H. (2004). Polymorphism in liquids. Science, 306 (5697), 820-821. DOI: 10.1126/science.1104417
  31. Jansen, M., Jäschke, B., Jäschke, T. (2002). Amorphous multinary ceramics in the Si-BNC system. High Performance Non-Oxide Ceramics I, 137-191. DOI: 10.1007/3-540-45613-9_3
  32. Senker, J., Rössler, E. (2001). Triphenyl phosphite: a candidate for liquid polyamorphism. Chemical Geology, 174 (1-3), 143-156. DOI: 10.1016/S0009-2541(00)00313-2
  33. Tarjus, G., Kivelson, S.A., Nussinov, Z., Viot, P. (2005). The frustration-based approach of supercooled liquids and the glass transition: a review and critical assessment. Journal of Physics: Condensed Matter, 17 (50), R1143. DOI: 10.1088/0953-8984/17/50/R01
  34. Lee, P.J., Saion, E., Al-Hada, N.M., Soltani, N. (2015). A simple up-scalable thermal treatment method for synthesis of ZnO nanoparticles. Metals, 5 (4), 2383-2392. DOI: 10.3390/met5042383
  35. Bouzid, H., Faisal, M., Harraz, F.A., Al-Sayari, S.A., Ismail, A.A. (2015). Synthesis of mesoporous Ag/ZnO nanocrystals with enhanced photocatalytic activity. Catalysis Today, 252, 20-26. DOI: 10.1016/j.cattod.2014.10.011
  36. Han, Q., Wang, B., Gao, J., Cheng, Z., Zhao, Y., Zhang, Z., Qu, L. (2016). Atomically thin mesoporous nanomesh of graphitic C3N4 for high-efficiency photocatalytic hydrogen evolution. ACS Nano, 10 (2), 2745-2751. DOI: 10.1021/acsnano.5b07831
  37. Kumar, S., Kumar, A., Kumar, A., Balaji, R., Krishnan, V. (2018). Highly Efficient Visible Light Active 2D-2D Nanocomposites of N-ZnO-g-C3N4 for Photocatalytic Degradation of Diverse Industrial Pollutants. ChemistrySelect, 3 (6), 1919-1932. DOI: 10.1002/slct.201703156
  38. Yang, Z., Yan, J., Lian, J., Xu, H., She, X., Li, H. (2016). g-C3N4/TiO2 Nanocomposites for Degradation of Ciprofloxacin under Visible Light Irradiation. ChemistrySelect, 1 (18), 5679-5685. DOI: 10.1002/slct.201600861
  39. Gao, J., Zhou, Y., Li, Z., Yan, S., Wang, N., Zou, Z. (2012). High-yield synthesis of millimetre-long, semiconducting carbon nitride nanotubes with intense photoluminescence emission and reproducible photoconductivity. Nanoscale, 4 (12), 3687-3692. DOI: 10.1039/C2NR30777D
  40. Wu, J., Xie, Y., Ling, Y., Dong, Y., Li, J., Li, S., Zhao, J. (2019). Synthesis of flower-like g-C3N4/BiOBr and enhancement of the activity for the degradation of bisphenol A under visible light irradiation. Frontiers in Chemistry, 649. DOI: 10.3389/fchem.2019.00649
  41. Xu, Y., Schoonen, M.A.A. (2000). The absolute energy positions of conduction and valence bands of selected semiconducting minerals. American Mineralogist, 85(3-4), 543-556. DOI: 10.2138/am-2000-0416
  42. Wang, Y., Shi, R., Lin, J., Zhu, Y. (2011). Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like C3N4. Energy & Environmental Science, 4 (8), 2922-2929. DOI: 10.1039/C0EE00825G
  43. Kragović, M., Stojmenović, M., Petrović, J., Loredo, J., Pašalić, S., Nedeljković, A., Ristović, I. (2019). Influence of Alginate Encapsulation on Point of Zero Charge (pHpzc) and Thermodynamic Properties of the Natural and Fe(III) - Modified Zeolite. Procedia Manufacturing, 32, 286-293. DOI: 10.1016/j.promfg.2019.02.216
  44. Khaki, M.R.D., Shafeeyan, M.S., Raman, A.A.A., Daud, W.M.A.W. (2018). Evaluating the efficiency of nano-sized Cu doped TiO2/ZnO photocatalyst under visible light irradiation. Journal of Molecular Liquids, 258, 354-365. DOI: 10.1016/j.molliq.2017.11.030
  45. Tran Thi, V.H., Pham, T.N., Pham, T.T., Le, M.C. (2019). Synergistic adsorption and photocatalytic activity under visible irradiation using Ag-ZnO/GO nanoparticles derived at low temperature. Journal of Chemistry, 2019. DOI: 10.1155/2019/2979517
  46. Padmapriya, G., Manikandan, A., Krishnasamy, V., Jaganathan, S.K., Antony, S.A. (2016). Spinel NixZn1−xFe2O4 (0.0≤x≤1.0) nano-photocatalysts: synthesis, characterization and photocatalytic degradation of methylene blue dye. Journal of Molecular Structure, 1119, 39-47. DOI: 10.1016/j.molstruc.2016.04.049
  47. Messih, M.A., Ahmed, M., Soltan, A., Anis, S.S. (2017). Facile approach for homogeneous dispersion of metallic silver nanoparticles on the surface of mesoporous titania for photocatalytic degradation of methylene blue and indigo carmine dyes. Journal of Photochemistry and Photobiology A: Chemistry, 335, 40-51. DOI: 10.1016/j.jphotochem.2016.11.001

Last update:

No citation recorded.

Last update:

No citation recorded.