skip to main content

Synthesis Metal-Organic Framework (MOFs) Cr-PTC-HIna Modulated Isonicotinic Acid for Methylene Blue Photocatalytic Degradation

1Integrated Laboratory Centre, Faculty of Science and Technology, UIN Syarif Hidayatullah Jakarta, Jl. Ir. H. Juanda No. 95 Ciputat Tangerang Selatan 15412, Indonesia

2Department of Chemistry, Faculty of Science and Technology, UIN Syarif Hidayatullah Jakarta, Jl. Ir. H. Juanda No. 95 Ciputat Tangerang Selatan 15412, Indonesia

3Department of Chemistry Education, Faculty of Tarbiya and Teaching Sciences, UIN Syarif Hidayatullah Jakarta, Jl. Ir. H. Juanda No. 95 Ciputat Tangerang Selatan 15412, Indonesia

4 Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Indonesia, Jl. Lingkar Kampus Raya, Pondok Cina, Beji, Depok, Jawa Barat 16424, Indonesia

View all affiliations
Received: 24 Mar 2022; Revised: 29 Apr 2022; Accepted: 30 Apr 2022; Available online: 6 May 2022; Published: 30 Jun 2022.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2022 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image

A novel responsive visible light Cr-based MOF, Cr-PTC-HIna, was synthesized using the solvothermal method. Cr-PTC-HIna peaks were observed at 2θ = 9.04°, 12.71°, 14.88°, 25,48°, 27.72°, 28.97°, and 43.60° with a crystal size of 21 nm. Band gap energy achieved from the Cr-PTC HIna was 2.05 eV. Scanning Electron Microscope (SEM) analysis obtained a 3D structural morphology of MOFs Cr-PTC-HIna with a cylindrical tube shape and a particle size of 251.45 nm. Cr-PTC-HIna gave the optimum methylene blue degradation at pH of 7 under 250 watts mercury lamp irradiation for 180 minutes with degradation capacity of 95.40 mg/g. Electron holes and hydroxyl radicals were found as the dominant species contributing to methylene blue degradation. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (


Fulltext View|Download
Keywords: Isonicotinic acid; methylene blue; Cr-PTC-HIna; photocatalyst; solvothermal
Funding: UIN Syarif Hidayatullah Jakarta under contract B-301/LP2M-PUSLITPEN/TL.03/2022

Article Metrics:

  1. Wong, Y.C., Szeto, Y.S., Cheung, W.H., McKay, G. (2003). Equilibrium studies for acid dye adsorption onto chitosan. Langmuir, 19(19), 7888–7894. DOI: 10.1021/la030064y
  2. Illahi, A.N., Rouf, U.A., Maulidianingtyas, H., Hastuti, E., Prasetyo, A., Istighfarini, V.N. (2020). Sintesis dan karakterisasi material fotokatalis heterojunction Bi4Ti3O12/SrTiO3 dengan metode sonikasi. Jurnal Kimia Riset, 5(1), 36. DOI: 10.20473/jkr.v5i1.20196
  3. Yahya, N., Aziz, F., Jamaludin, N.A., Mutalib, M.A., Ismail, A.F., Salleh, W.N.W, Jaafar, J., Yusof, N., Ludin, N.A. (2018). A review of integrated photocatalyst adsor bents for wastewater treatment. Journal of Environmental Chemical Engineering, 6(6), 7411–7425. DOI: 10.1016/j.jece.2018.06.051
  4. Vyas, V.S., Lau, V.W.H., Lotsch, B.V. (2016). Soft Photocatalysis: Organic Polymers for Solar Fuel Production. Chemistry of Materials, 28(15), 5191–5204. DOI: 10.1021/acs.chemmater.6b01894
  5. Zulys, A., Adawiah, A., Gunlazuardi, J., Yudhi, M.D.L. (2021). Light-harvesting metal-organic frameworks (MOFs) La-PTC for photocatalytic dyes degradation. Bulletin of Chemical Reaction Engineering & Catalysis, 16(1), 170–178. DOI: 10.9767/bcrec.16.1.10309.170-178
  6. Bumstead, A.M., Cordes, D.B., Dawson, D.M., Chakarova, K.K., Mihaylov, M.Y., Hobday, C.L., Düren, T., Hadjiivanov, K.I., Slawin, A.M.Z., Ashbrook, S.E., Prasad, R.R.R., Wright, P.A. (2018). Modulator-controlled synthesis of microporous STA-26, an interpenetrated 8,3-connected Zirconium MOF with the the-i topology, and its reversi ble lattice shift. Chemistry - A European Journal, 24 (23), 6115–6126. DOI: 10.1002/chem.201705136
  7. Cai, G., Jiang, H.L. (2017). A Modulator-induced defect-formation strategy to hierarchically porous metal–organic frameworks with high stability. Angewandte Chemie - International Edition, 56(2), 563–567. DOI: 10.1002/anie.201610914
  8. Jiang, D., Zhu, Y., Chen, M., Huang, B., Zeng, G., Huang, D., Song, B., Qin, L., Wang, H., Wei, W. (2019). Modified crystal structure and improved photocatalytic activity of MIL-53 via inorganic acid modulator. Applied Catalysis B: Environmental, 255, 117746. DOI: 10.1016/j.apcatb.2019.117746
  9. Derivadas, I. (2020). Isonicotinic acid ≥ 99%, for synthesis Safety data sheet. In IDESA Petroquimica
  10. Zhang, F.H., Wang, Y.Y., Lv, C., Li, Y.C., Zhao, X.Q. (2019). Luminescent complexes associated with isonicotinic acid. Journal of Luminescence, 207, 561–570. DOI: 10.1016/j.jlumin.2018.11.051
  11. Garibay, S.J., Lordanov, I., Islamoglu, T., De-Coste, J.B., Farha, O.K. (2018). Synthesis and functionalization of phase- pure NU-901 for enhanced CO2 adsorption: The influence of zirconium salt and modulator on topology and phase purity. CrystEngComm, 2018, 20, 7066-7070. DOI: 10.1039/c8ce01454j
  12. Zhou, L., Fan, H., Zhou, B., Cui, Z., Qin, B., Zhang, X., Li, W., Zhang, J. (2019). Tetranuclear cobalt(II)-isonicotinic acid frameworks: selective CO2 capture, magnetic properties, and derived “Co3O4” exhibiting high performance in lithium ion batteries. Dalton Transactions, 48(1), 296–303. DOI: 10.1039/c8dt04054k
  13. Yuan, S., Feng, L., Wang, K., Pang, J., Bosch, M., Lollar, C., Sun, Y., Qin, J., Yang, X.,Zhang, P., Wang, Q., Zou, L., Zhang, Y., Zhang, L., Fang, Y., Li, J., Zhou, H.C. (2018). Stable metal– organic frameworks: design, synthesis, and applications. Advanced Materials, 30 (37), 1–35. DOI: 10.1002/adma.201704303
  14. Hasan, M. R. (2015). Pengaruh Penambahan Modulator Asam Asetat Pada Sintesis Metal Organic Framework Tipe HKUST-1 (ITS). ITS. Retrieved from
  15. Seetharaj, R., Vandana, P.V., Arya, P., Mathew, S. (2019). Dependence of solvents, pH, molar ratio and temperature in tuning metal organic framework architecture. Arabian Journal of Chemistry, 12(3), 295–315. DOI: 10.1016/j.arabjc.2016.01.003
  16. Roosta, M., Ghaedi, M., Daneshfar, A., Sahraei, R., Asghari, A. (2014). Optimization of the ultrasonic assisted removal of methylene blue by gold nanoparticles loaded on activated carbon using experimental design methodology. Ultrason. Sonochem., 21, 242–252. DOI: 10.1016/j.ultsonch.2013.05.014
  17. Li, D., Zhong, G. (2014). Synthesis , crystal structure , and thermal decomposition of the Cobalt(II) complex with 2-picolinic acid. The Scientific World Journal, 2014, 1–7. DOI: 10.1155/2014/641608
  18. Jiang, X., Zhang, L., Liu, S., Zhang, Y., He, Z., Li, W., Zhang, F., Shi, Y., Lü, W., Li, Y., Wen, Q., Li, J., Feng, J., Ruan., S., Zeng Y.J., Zhu, X., Lu, Y., Zhang, H. (2018). Ultrathin metal–organic framework: an emerging broadband nonlinear optical material for ultrafast photonics. Advanced Optical Materials, 6 (16), 1–11. DOI: 10.1002/adom.201800561
  19. Zulys, A., Asrianti, D., Gunlazuardi, J. (2020). Synthesis and characterization of metal organic frameworks based on nickel and perylene dyes as water splitting photocatalyst. AIP Conference Proceedings, 2243, 5–9. DOI: 10.1063/5.0005001
  20. Lin, C.K., Zhao, D., Gao, W.Y., Yang, Z., Ye, J., Xu, T., Ge, Q., Ma, S., Liu, D.J. (2012). Tunability of band gaps in metal-organic frameworks. Inorganic Chemistry, 51 16), 9039–9044. DOI: 10.1021/ic301189m
  21. Adawiah, A., Yudhi, M.D.L., Zulys, A. (2021). Photocatalytic Degradation of Methylene Blue and Methyl Orange by Y-PTC Metal-Organic Framework. Jurnal Kimia Valensi, 7(1), 129-141. DOI: 10.15408/jkv.v7i2.22267
  22. Hoffman, A.J., Mills, G., Yee, H., Hoffmann, M.R. (1992). Q-sized CdS: Synthesis, characterization, and efficiency of photoinitiation of polymerization of several vinylic monomers. Journal of Physical Chemistry, 96(13), 5546–5552. DOI: 10.1021/j100192a067
  23. Mohanraj, V.J., Chen, Y. (2006). Nanoparticles – A Review. Tropical Journal of Pharmaceutical Research, 5 (1), 561-573. DOI: 10.4314/tjpr.v5i1.14634
  24. Zhang, P., Wang, Q., Fang, Y., Chen, W., Kirchon, A.A., Baci, M., Feng, M., Sharma, V.K., Zhou, H.C. (2019). 7-Metal-organic frameworks for capture and degradation of organic pollutants. In Metal-Organic Frameworks (MOFs) for Environmental Applications. Elsevier Inc
  25. Rojas, S., Horcajada, P. (2020). Metal-Organic Frameworks for the Removal of Emerging Organic Contaminants in Water. Chemical Reviews, 120 (16), 8378–8415. DOI: 10.1021/acs.chemrev.9b00797
  26. Mantasha, I., Saleh, H.A.M., Qasem, K.M.A., Shahid, M., Mehtab, M., Ahmad, M. (2020). Efficient and selective adsorption and separation of methylene blue (MB) from mixture of dyes in aqueous environment employing a Cu(II) based metal organic framework. Inorganica Chimica Acta, 511, 119787. DOI: 10.1016/j.ica.2020.119787
  27. Wang, F., Guo, H., Chai, Y., Li, Y., Liu, C. (2013). The controlled regulation of morphology and size of HKUST-1 by coordination modulation method. Microporous and Mesoporous Materials, 173, 181–188. DOI: 10.1016/j.micromeso.2013.02.023
  28. Rondang, T., Limbong, H.P., Pinem, C., Manurung, E. (2017). Pengaruh Ukuran Partikel, Waktu dan Suhu Pada Ekstraksi Fenol dari Lengkuas Merah. Jurnal Teknik Kimia USU, 5 (4), 53–56. DOI: 10.32734/jtk.v5i4.1555
  29. Kudo, A., Miseki, Y. (2009). Heterogeneous photocatalyst materials for water splitting. Chemical Society Reviews, 38(1), 253–278. DOI: 10.1039/b800489g
  30. Samuel, M.S., Bhattacharya, J., Parthiban, C., Viswanathan, G., Pradeep Singh, N.D. (2018). Ultrasound-assisted synthesis of metal organic framework for the photocatalytic reduction of 4-nitrophenol under direct sunlight. Ultrasonics Sonochemistry, 49, 215–221. DOI: 10.1016/j.ultsonch.2018.08.004
  31. Krishnan, J., Arvind Kishore, A., Suresh, A., Madhumeetha, B., Gnana Prakash, D. (2017). Effect of pH, inoculum dose and initial dye concentration on the removal of azo dye mixture under aerobic conditions. International Biodeterioration and Biodegradation, 119, 16–27. DOI: 10.1016/j.ibiod.2016.11.024
  32. Kumar, A. (2017). A Review on the factors affecting the photocatalytic degradation of hazardous materials. Material Science & Engineering International Journal, 1(3), 106–114. DOI: 10.15406/mseij.2017.01.00018
  33. Samsudin, M.F.R., Siang, L.T., Sufian, S., Bashiri, R., Mohamed, N.M., Ramli, R.M. (2018). Exploring the role of electron-hole scavengers on optimizing the photocatalytic performance of BiVO4. Materials Today: Proceedings, 5 (10), 21703–21709. DOI: 10.1016/j.matpr.2018.07.022

Last update:

No citation recorded.

Last update:

No citation recorded.