skip to main content

H2O2 Exfoliation of TiO2 for Enhanced Hydrogen Production from Photocatalytic Reforming of Methanol

Centre for Advanced Materials and Energy Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei Darussalam

Received: 22 Mar 2022; Revised: 16 May 2022; Accepted: 17 May 2022; Available online: 19 May 2022; Published: 30 Jun 2022.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2022 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image
Abstract

Hydrogen is considered a future energy carrier for clean and sustainable technology. Photocatalytic reforming of methanol produced hydrogen using water and energy from sunlight. This study reported enhanced activity of TiO2 without metal co-catalyst for hydrogen production following H2O2 exfoliation. TiO2 was transformed into peroxo-titania species on the outer layer of the particles, resulting in surface exfoliation. The exfoliation reduced TiO2 crystallite sizes enhanced the surface hydroxyl group and reduced the band gap to 3.0 eV. Hydrogen production from methanol-water mixtures on the TiO2 after four consecutive exfoliations was measured at 300 µmol, significantly higher than the fresh TiO2 (50 µmol).  H2O2 exfoliated TiO2 reduced the pathway for charge migration to the surface.  A high concentration of surface hydroxyl group trapped the charge carriers for efficient hydrogen production. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Fulltext View|Download
Keywords: H2O2; TiO2; Hydrogen; Methanol; photocatalyst; reforming
Funding: University Research Grant - Universiti Brunei Darussalam under contract UBD/RSCH/1.9/FICBF(b)/2021/011

Article Metrics:

  1. Nikolaidis, P., Poullikkas, A. (2017). A comparative overview of hydrogen production processes. Renewable and Sustainable Energy Reviews, 67, 597–611. DOI: 10.1016/j.rser.2016.09.044
  2. Kondarides, D.I., Daskalaki, V.M., Patsoura, A., Verykios, X.E. (2008). Hydrogen production by photo-induced reforming of biomass components and derivatives at ambient conditions. Catalysis Letters, 122(1–2), 26–32. DOI: 10.1007/s10562-007-9330-3
  3. Gomathisankar, P., Noda, T., Katsumata, H., Suzuki, T., Kaneco, S. (2014). Enhanced hydrogen production from aqueous methanol solution using TiO2/Cu as photocatalysts. Frontiers of Chemical Science and Engineering, 8(2), 197–202. DOI: 10.1007/s11705-014-1417-y
  4. Ahmad, H., Kamarudin, S.K., Minggu, L.J., Kassim, M. (2015). Hydrogen from photo-catalytic water splitting process: A review. Renewable and Sustainable Energy Reviews, 43, 599–610. DOI: 10.1016/j.rser.2014.10.101
  5. Caravaca, A., Jones, W., Hardacre, C., Bowker, M. (2016). H2 production by the photocatalytic reforming of cellulose and raw biomass using Ni, Pd, Pt and Au on titania. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 472(2191) DOI: 10.1098/rspa.2016.0054
  6. Piras, C.C., Fernández-Prieto, S., De Borggraeve, W.M. (2019). Ball milling: A green technology for the preparation and functionalisation of nanocellulose derivatives. Nanoscale Advances, 1(3), 937–947. DOI: 10.1039/c8na00238j
  7. Ni, M., Leung, M.K.H., Leung, D.Y.C., Sumathy, K. (2007). A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renewable and Sustainable Energy Reviews, 11(3), 401–425. DOI: 10.1016/j.rser.2005.01.009
  8. López, C.R., Melián, E.P., Ortega Méndez, J.A., Santiago, D.E., Doña Rodríguez, J.M., González Díaz, O. (2015). Comparative study of alcohols as sacrificial agents in H2 production by heterogeneous photocatalysis using Pt/TiO2 catalysts. Journal of Photochemistry and Photobiology A: Chemistry, 312, 45–54. DOI: 10.1016/j.jphotochem.2015.07.005
  9. De Oliveira Melo, M., Silva, L.A. (2011). Photocatalytic production of hydrogen: An innovative use for biomass derivatives. Journal of the Brazilian Chemical Society, 22(8), 1399–1406. DOI: 10.1590/S0103-50532011000800002
  10. Wu, B.H., Liu, W.T., Chen, T.Y., Perng, T.P., Huang, J.H., Chen, L.J. (2016). Plasmon-enhanced photocatalytic hydrogen production on Au/TiO2 hybrid nanocrystal arrays. Nano Energy, 27, 412–419. DOI: 10.1016/j.nanoen.2016.07.029
  11. Wen, M., Mori, K., Kuwahara, Y., Yamashita, H. (2017). Plasmonic Au@Pd Nanoparticles Supported on a Basic Metal–Organic Framework: Synergic Boosting of H 2 Production from Formic Acid. ACS Energy Letters, 2(1), 1–7. DOI: 10.1021/acsenergylett.6b00558
  12. Langhammer, C., Yuan, Z., Zorić, I., Kasemo, B. (2006). Plasmonic properties of supported Pt and Pd nanostructures. Nano Letters, 6(4), 833–838. DOI: 10.1021/nl060219x
  13. Mahmoud, M.A. (2014). Plasmon resonance hybridization of gold nanospheres and palladium nanoshells combined in a rattle structure. Journal of Physical Chemistry Letters, 5(15), 2594–2600. DOI: 10.1021/jz501201p
  14. Ariyanti, D., Dong, J., Dong, J., Gao, W. (2016). Visible Light Photocatalytic Properties of Modified Titanium Dioxide Nanoparticles via Aluminium Treatment. Bulletin of Chemical Reaction Engineering & Catalysis, 11(1), 40–46. DOI: 10.9767/BCREC.11.1.414.40-46
  15. Tian, H., Zhang, X.L., Scott, J., Ng, C., Amal, R. (2014). TiO2 -supported copper nanoparticles prepared via ion exchange for photocatalytic hydrogen production. Journal of Materials Chemistry A, 2(18), 6432–6438. DOI: 10.1039/C3TA15254E
  16. Bahruji, H., Bowker, M., Davies, P.R., Kennedy, J., Morgan, D.J. (2015). The importance of metal reducibility for the photoreforming of methanol on transition metal-TiO2 photocatalysts and the use of non-precious metals. International Journal of Hydrogen Energy, 40(3), 1465–1471. DOI: 10.1016/j.ijhydene.2014.11.097
  17. Montoya, A.T., Gillan, E.G. (2018). Enhanced Photocatalytic Hydrogen Evolution from Transition-Metal Surface-Modified TiO2. ACS Omega, 3(3), 2947–2955. DOI: 10.1021/acsomega.7b02021
  18. Bahruji, H., Maarof, H., Abdul Rahman, N. (2019). Quantum efficiency of Pd/TiO2 catalyst for photocatalytic reforming of methanol in ultra violet region. Chemical Papers, 73(11), 2707–2714. DOI: 10.1007/S11696-019-00822-W
  19. Modirshahla, N., Behnajady, M.A., Rahbarfam, R., Hassani, A. (2012). Effects of Operational Parameters on Decolorization of C. I. Acid Red 88 by UV/H2O2 Process: Evaluation of Electrical Energy Consumption. CLEAN – Soil, Air, Water, 40(3), 298–302. DOI: 10.1002/CLEN.201000574
  20. Etacheri, V., Seery, M.K., Hinder, S.J., Pillai, S.C. (2011). Oxygen rich titania: A dopant free, high temperature stable, and visible-light active anatase photocatalyst. Advanced Functional Materials, 21(19), 3744–3752. DOI: 10.1002/adfm.201100301
  21. Tan, L.L., Ong, W.J., Chai, S.P., Mohamed, A.R. (2014). Band gap engineered, oxygen-rich TiO2 for visible light induced photocatalytic reduction of CO2. Chemical Communications, 50(52), 6923–6926. DOI: 10.1039/c4cc01304b
  22. Kang, S., Zhang, L., Liu, C., Huang, L., Shi, H., Cui, L. (2017). Hydrogen peroxide activated commercial P25 TiO2 as efficient visible-light-driven photocatalyst on dye degradation. International Journal of Electrochemical Science, 12(6), 5284–5293. DOI: 10.20964/2017.06.54
  23. Wen, P., Zhang, Y., Xu, G., Ma, D., Qiu, P., Zhao, X. (2019). Ti3+ self-doped TiO2 as a photocatalyst for cyclohexane oxidation under visible light irradiation. Journal of Materiomics, 5(4), 696–701. DOI: 10.1016/J.JMAT.2019.04.009
  24. Ayodhya, D., Perka, S., Nambigari, N. (2018). Sunlight-driven efficient photocatalytic and antimicrobial studies of microwave-assisted Ir-doped TiO2 nanoparticles for environmental safety. Nanochemistry Research, 3(1), 36–49. DOI: 10.22036/NCR.2018.01.005
  25. Eghbali, P., Hassani, A., Sündü, B., Metin, Ö. (2019). Strontium titanate nanocubes assembled on mesoporous graphitic carbon nitride (SrTiO3/mpg-C3N4): Preparation, characterization and catalytic performance. Journal of Molecular Liquids, 290, 111208. DOI: 10.1016/J.MOLLIQ.2019.111208
  26. Li, Q., Anpo, M., Wang, X. (2020). Application of photoluminescence spectroscopy to elucidate photocatalytic reactions at the molecular level. Research on Chemical Intermediates 2020 46:10, 46(10), 4325–4344. DOI: 10.1007/S11164-020-04209-5
  27. Li, H., Zhang, W., Liu, Y. (2020). HZSM-5 zeolite supported boron-doped TiO2 for photocatalytic degradation of ofloxacin. Journal of Materials Research and Technology, 9(2), 2557–2567. DOI: 10.1016/J.JMRT.2019.12.086
  28. Wu, C.Y., Tu, K.J., Lo, Y.S., Pang, Y.L., Wu, C.H. (2016). Alkaline hydrogen peroxide treatment for TiO2 nanoparticles with superior water-dispersibility and visible-light photocatalytic activity. Materials Chemistry and Physics, 181, 82–89. DOI: 10.1016/J.MATCHEMPHYS.2016.06.036
  29. Andrés, J., Gracia, L., Gouveia, A.F., Ferrer, M.M., Longo, E. (2015). Effects of surface stability on the morphological transformation of metals and metal oxides as investigated by first-principles calculations. Nanotechnology, 26(40) DOI: 10.1088/0957-4484/26/40/405703
  30. Pan, J., Liu, G., Lu, G.Q., Cheng, H.M. (2011). On the True Photoreactivity Order of {001}, {010}, and {101} Facets of Anatase TiO2 Crystals. Angewandte Chemie International Edition, 50(9), 2133–2137. DOI: 10.1002/ANIE.201006057
  31. Im, Y., Kang, S., Kim, K.M., Ju, T., Han, G.B., Park, N.K., Lee, T.J., Kang, M. (2013). Dynamic hydrogen production from methanol/water photo-splitting using core@shell-structured CuS@TiO2 catalyst wrapped by high concentrated TiO2 Particles. International Journal of Photoenergy, 2013 DOI: 10.1155/2013/452542
  32. Camposeco, R., Hinojosa-Reyes, M., Zanella, R. (2021). Highly efficient photocatalytic hydrogen evolution by using Rh as co-catalyst in the Cu/TiO2 system. International Journal of Hydrogen Energy, 46(51), 26074–26086. DOI: 10.1016/J.IJHYDENE.2021.01.216
  33. Jung, M., Ng, Y.H., Jiang, Y., Scott, J., Amal, R. (2013). Active Cu Species in Cu/TiO2 for Photocatalytic Hydrogen Evolution. Chemeca 2013: Challenging Tomorrow
  34. Jung, M., Scott, J., Ng, Y.H., Jiang, Y., Amal, R. (2014). Impact of Cu oxidation state on photocatalytic H2 production by Cu/TiO2. Proceedings of the 2014 International Conference on Nanoscience and Nanotechnology, ICONN 2014, 4–6. DOI: 10.1109/ICONN.2014.6965246
  35. Montoya, A.T., Gillan, E.G. (2018). Enhanced Photocatalytic Hydrogen Evolution from Transition-Metal Surface-Modified TiO2. ACS Omega, 3(3), 2947–2955. DOI: 10.1021/ACSOMEGA.7B02021
  36. Gomathisankar, P., Noda, T., Katsumata, H., Suzuki, T., Kaneco, S. (2014). Enhanced hydrogen production from aqueous methanol solution using TiO2/Cu as photocatalysts. Frontiers of Chemical Science and Engineering 8(2), 197–202. DOI: 10.1007/S11705-014-1417-Y
  37. Xu, Q., Ma, Y., Zhang, J., Wang, X., Feng, Z., Li, C. (2011). Enhancing hydrogen production activity and suppressing CO formation from photocatalytic biomass reforming on Pt/TiO2 by optimizing anatase–rutile phase structure. Journal of Catalysis, 278(2), 329–335. DOI: 10.1016/J.JCAT.2011.01.001
  38. Ohno, T., Sarukawa, K., Tokieda, K., Matsumura, M. (2001). Morphology of a TiO2 Photocatalyst (Degussa, P-25) Consisting of Anatase and Rutile Crystalline Phases. Journal of Catalysis, 203(1), 82–86. DOI: 10.1006/JCAT.2001.3316
  39. Zou, J., Gao, J., Xie, F. (2010). An amorphous TiO2 sol sensitized with H2O2 with the enhancement of photocatalytic activity. Journal of Alloys and Compounds, 497(1–2), 420–427. DOI: 10.1016/J.JALLCOM.2010.03.093
  40. Ohtani, B., Ogawa, Y., Nishimoto, S. (1997). Photocatalytic Activity of Amorphous−Anatase Mixture of Titanium(IV) Oxide Particles Suspended in Aqueous Solutions. The Journal of Physical Chemistry B, 101(19), 3746–3752. DOI: 10.1021/jp962702+
  41. Bickley, R.I., Gonzalez-Carreno, T., Lees, J.S., Palmisano, L., Tilley, R.J.D. (1991). A structural investigation of titanium dioxide photocatalysts. Journal of Solid State Chemistry, 92(1), 178–190. DOI: 10.1016/0022-4596(91)90255-G
  42. Boonstra, A.H., Mutsaers, C.A.H.A. (1975). Adsorption of hydrogen peroxide on the surface of titanium dioxide. The Journal of Physical Chemistry, 79(18), 1940–1943. DOI: 10.1021/J100585A011
  43. Bahruji, H., Bowker, M., Davies, P.R. (2019). Influence of TiO2 structural properties on photocatalytic hydrogen gas production. Journal of Chemical Sciences, 131(4), 33. DOI: 10.1007/S12039-019-1608-7
  44. Li, D., Song, H., Meng, X., Shen, T., Sun, J., Han, W., Wang, X. (2020). Effects of particle size on the structure and photocatalytic performance by alkali-treated TiO2. Nanomaterials, 10(3), 1–14. DOI: 10.3390/nano10030546
  45. Topcu, S., Jodhani, G., Gouma, P.I. (2016). Optimized nanostructured TiO2 photocatalysts. Frontiers in Materials, 3, 1–9. DOI: 10.3389/fmats.2016.00035

Last update:

No citation recorded.

Last update:

No citation recorded.