skip to main content

The Effect of Zinc Oxide Supported on Gelatin Mesoporous Silica (GSBA-15) on Structural Character and Their Methylene Blue Photodegradation Performance

Study Program of Chemistry Education, Faculty of Teacher Training and Education, Sebelas Maret University, Jl. Ir. Sutami 36A, 57126 Surakarta, Central Java, Indonesia

Received: 21 Feb 2022; Revised: 21 Apr 2022; Accepted: 23 Apr 2022; Available online: 6 May 2022; Published: 30 Jun 2022.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2022 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image
Abstract

Gelatin mesoporous silica SBA-15 (GSBA-15) with rod-like morphology has been successfully synthesized by hydrothermal method using P-123:gelatin, then aged at 90 °C for 24 h and calcined at 550 °C for 5 h. GSBA-15 was impregnated with ZnO amounts of 1; 5; and 10 wt% to obtain Zn/GSBA-15. Samples were characterized by X-ray Diffraction (XRD), Fourier Transform Infra Red (FTIR), Scanning Electron Microscopy (SEM), and Brunauer-Emmett-Teller (BET). The efficiency of methylene blue photodegradation was determined by a UV-Vis spectrophotometer. The FTIR result is functional groups of ZnO/GSBA-15, those were Si−O−Si, −OH, Zn−OH, and Zn−O. The morphology of ZnO/GSBA-15 was rod-like, and it consisted of silica, oxygen, and Zn. The surface area and pore volume of GSBA-15 declined (surface area from 520.8 to 351.9 m2/g and pore volume from 0.707 to 0.564 cm3/g) after ZnO impregnation due to pore blocking. At the same time, increasing pore diameter (from 2.82 nm to 3.19 nm) and crystallite size (from 5.1 nm to 12.6 nm) were observed due to the overlapping of ZnO-Silica particles. The increasing incorporation of ZnO on the silica GSBA-15 framework increases the photodegradation performance from 88.76% to 94.90% due to the high surface area, functional group rich, and dispersion of ZnO active sites. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Fulltext View|Download
Keywords: Photocatalytic; Degradation; ZnO/GSBA-15; photocatalyst mass; methylene blue
Funding: Ministry of Research, Technology and Higher Education Indonesia in Excellence Fundamental Research for University scheme under contract contract number 221.1/UN27.22/HK 07.00/2021

Article Metrics:

  1. Díaz-Uribe, C., Vallejo, W., Campos, K., Solano, W., Andrade, J., Muñoz-Acevedo, A., Schott, E., Zarate, X. (2018). Improvement of the photocatalytic activity of TiO2 using Colombian Caribbean species (Syzygium cumini) as natural sensitizers: Experimental and theoretical studies. Dyes and Pigments, 150, 370–376. DOI: 10.1016/j.dyepig.2017.12.027
  2. Rajagopal, S., Paramasivam, B., Muniyasamy, K. (2020). Photocatalytic removal of cationic and anionic dyes in the textile wastewater by H2O2 assisted TiO2 and micro-cellulose composites. Separation and Purification Technology, 252, 117444. DOI: 10.1016/j.seppur.2020.117444
  3. Wu, M., Shi, L., Lim, T.T., Veksha, A., Yu, F., Fan, H., Mi, J. (2018). Ordered mesoporous Zn-based supported sorbent synthesized by a new method for high-efficiency desulfurization of hot coal gas. Chemical Engineering Journal, 353, 273–287. DOI: 10.1016/j.cej.2018.07.134
  4. Lihitkar, P.B., Violet, S., Shirolkar, M., Singh, J., Srivastava, O.N., Naik, R.H., Kulkarni, S.K. (2012). Confinement of zinc oxide nanoparticles in ordered mesoporous silica MCM-41. Materials Chemistry and Physics, 133(2–3), 850–856. DOI: 10.1016/j.matchemphys.2012.01.106
  5. Ali, A., Shoeb, M., Li, Y., Li, B., Khan, M.A. (2020). Enhanced photocatalytic degradation of antibiotic drug and dye pollutants by graphene-ordered mesoporous silica (SBA 15)/TiO2 nanocomposite under visible-light irradiation. Journal of Molecular Liquids, 324, 114696. DOI: 10.1016/j.molliq.2020.114696
  6. Brossault, D.F.F., McCoy, T.M., Routh, A.F. (2021). Self-assembly of TiO2/Fe3O4/SiO2 microbeads: A green approach to produce magnetic photocatalysts. Journal of Colloid and Interface Science, 584, 779–788. DOI: 10.1016/j.jcis.2020.10.001
  7. Dhokpande, S.R., Kaware, J.P., Kulkarni, S.J. (2013). Research For Removal Of Nickel From Waste Water - A Review. International Journal of Science, Engineering and Technology Research (IJSETR), 2 (12), 2162–2166. DOI: 10.3282/ijster,20132166
  8. Wang, J., Shao, X., Zhang, Q., Ma, J., Ge, H. (2018). Preparation and photocatalytic application of magnetic Fe2O3/SBA-15 nanomaterials. Journal of Molecular Liquids, 260, 304–312. DOI: 10.1016/j.molliq.2018.03.109
  9. Ahmed, M.B., Zhou, J.L., Ngo, H.H., Guo, W., Thomaidis, N.S., Xu, J. (2017). Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: A critical review. Journal of Hazardous Materials, 323, 274–298. DOI: 10.1016/j.jhazmat.2016.04.045
  10. Miao, J., Liu, B. (2016). Cadmium selenide-sensitized upright-standing mesoporous zinc oxide nanosheets for efficient photoelectrochemical H2 production. Journal of Energy Chemistry, 25(3), 371–374. DOI: 10.1016/j.jechem.2016.02.013
  11. Ulfa, M., Prasetyoko, D., Mahadi, A.H., Bahruji, H. (2020). Size tunable mesoporous carbon microspheres using Pluronic F127 and gelatin as co-template for removal of ibuprofen. Science of The Total Environment, 711, 135066. DOI: 10.1016/j.scitotenv.2019.135066
  12. Samadi, M., Zirak, M., Naseri, A., Khorashadizade, E., Moshfegh, A.Z. (2016). Recent progress on doped ZnO nanostructures for visible-light photocatalysis. Thin Solid Films, 605, 2–19. DOI: 10.1016/j.tsf.2015.12.064
  13. Ramalingam, R.J., Shukla, A.K., Kombaiah, K., Vijaya, J.J., Tawfeek, A.M. (2017). Synthesis, characterization and optical properties of sulfur and fluorine doped ZnO nanostructures for visible light utilized catalysis. Optik, 148, 325–331. DOI: 10.1016/j.ijleo.2017.08.129
  14. Hu, C., Hu, X., Li, R., Xing, Y. (2020). MOF derived ZnO/C nanocomposite with enhanced adsorption capacity and photocatalytic performance under sunlight. Journal of Hazardous Materials, 385, 121599. DOI: 10.1016/j.jhazmat.2019.121599
  15. Calzada, L.A., Castellanos, R., García, L.A., Klimova, T.E. (2019). TiO2, SnO2 and ZnO catalysts supported on mesoporous SBA-15 versus unsupported nanopowders in photocatalytic degradation of methylene blue. Microporous and Mesoporous Materials, 285, 247–258. DOI: 10.1016/j.micromeso.2019.05.015
  16. Babu, K.S., Reddy, A.R., Sujatha, C., Reddy, K.V. (2013). Effects of precursor, temperature, surface area and excitation wavelength on photoluminescence of ZnO/mesoporous silica nanocomposite. Ceramics International, 39(3), 3055–3064. DOI: 10.1016/j.ceramint.2012.09.085
  17. Trisunaryanti, W., Sumbogo, S.D., Novianti, S.A., Ayu, D. (2021). ZnO-Activated Carbon Blended as a Catalyst for Oxidative Desulfurization of Dibenzothiophene. Bulletin of Chemical Reaction Engineering & Catalysis, 16(4), 881–887. DOI: 10.9767/bcrec.16.4.11797.881-887
  18. Méndez, F.J., Franco-López, O.E., Díaz, G., Gómez-Cortés, A., Bokhimi, X., Klimova, T.E. (2020). On the role of niobium in nanostructured Mo/Nb-MCM-41 and NiMo/Nb-MCM-41 catalysts for hydrodesulfurization of dibenzothiophene. Fuel, 280, 118550. DOI: 10.1016/j.fuel.2020.118550
  19. Lolage, M., Parida, P., Chaskar, M., Gupta, A., Rautaray, D. (2020). Green Silica: Industrially scalable & sustainable approach towards achieving improved "nano filler – Elastomer" interaction and reinforcement in tire tread compounds. Sustainable Materials and Technologies, 26, e00232. DOI: 10.1016/j.susmat.2020.e00232
  20. Rehman, F., Ahmed, K., Rahim, A., Muhammad, N., Tariq, S., Azhar, U., Jamal, A., Zaib, S., Volpe, P.L.O., Airoldi, C. (2018). Organo-bridged silsesquioxane incorporated mesoporous silica as a carrier for the controlled delivery of ibuprofen and fluorouracil. Journal of Molecular Liquids, 258, 319–326. DOI: 10.1016/j.molliq.2018.03.057
  21. Jose, M.G.-G., Maria, V., Pardo, O., Francisco, J.S., Climent, V., Feliu, J.M., Herrero, E. (2021). On the Behavior of CTAB/CTAOH adayer on gold single crysta surface. Electrochim Acta, 391, 138947. DOI: 10.1016/j.electacta.2021.138947
  22. Damke, G.M.Z.F., Damke, E., de Souza Bonfim-Mendonça, P., Ratti, B.A., de Freitas Meirelles, L.E., da Silva, V.R.S., Gonçalves, R. S., César, G. B., de Oliveira Silva, S., Caetano, W., Hioka, N., Souza, R.P., Consolaro, M.E.L. (2020). Selective photodynamic effects on cervical cancer cells provided by P123 Pluronic®-based nanoparticles modulating hypericin delivery. Life Sciences, 255, 117858. DOI: 10.1016/j.lfs.2020.117858
  23. Petkova-olsson, Y., Oelschlaeger, C., Ullsten, H., Järnström, L. (2018). Journal of Colloid and Interface Science Structural , microrheological and kinetic properties of a ternary silica-Pluronic F127-starch thermosensitive system. Journal of Colloid and Interface Science, 514, 459–467. DOI: 10.1016/j.jcis.2017.12.051
  24. Kéri, M., Forgács, A., Papp, V., Bányai, I., Veres, P., Len, A., Dudás, Z., Fábián, I., Kalmár, J. (2020). Gelatin content governs hydration induced structural changes in silica-gelatin hybrid aerogels – Implications in drug delivery. Acta Biomaterialia, 105, 131–145. DOI: 10.1016/j.actbio.2020.01.016
  25. Gum, I.G., Bionanocomposites, M., Dziadkowiec, J., Mansa, R., Quintela, A., Rocha, F., Detellier, C. (2017). Applied Clay Science Preparation , characterization and application in controlled release of. Applied Clay Science, 135, 52–63. DOI: 10.1016/j.clay.2016.09.003
  26. Ulfa, M., Trisunaryanti, W., Falah, I.I., Kartini, I. (2016). Wormhole-Like Mesoporous Carbons from Gelatine as Multistep Infiltration Effect. Indonesian Journal of Chemistry, 16(3), 239–242. DOI: 10.22146/ijc.21137
  27. Ulfa, M., Prasetyoko, D., Bahruji, H., Nugraha, R.E. (2021). Green Synthesis of Hexagonal Hematite (α-Fe2O3) Flakes Using Pluronic F127-Gelatin Template for Adsorption and Photodegradation of Ibuprofen. Materials, 14(22), 6779. DOI: 10.3390/ma14226779
  28. Sachithanadam, M., Joshi, S.C. (2014). A new phenomenon of compressive strain recovery in gelatin-silica aerogel composites with SDS. Procedia Engineering, 75, 51–55. DOI: 10.1016/j.proeng.2013.11.010
  29. An, J., Gou, Y., Yang, C., Hu, F., Wang, C. (2013). Synthesis of a biocompatible gelatin functionalized graphene nanosheets and its application for drug delivery. Materials Science and Engineering: C, 33(5), 2827–2837. DOI: 10.1016/j.msec.2013.03.008
  30. Coradin, T., Bah, S., Livage, J. (2004). Gelatine/silicate interactions: From nanoparticles to composite gels. Colloids and Surfaces B: Biointerfaces, 35(1), 53–58. DOI: 10.1016/j.colsurfb.2004.02.008
  31. Elzoghby, A.O. (2013). Gelatin-based nanoparticles as drug and gene delivery systems: Reviewing three decades of research. Journal of Controlled Release, 172(3), 1075–1091. DOI: 10.1016/j.jconrel.2013.09.019
  32. Fatimah, I., Fadillah, G., Sahroni, I., Kamari, A., Sagadevan, S., Doong, R.A. (2021). Nanoflower-like composites of ZnO/SiO2 synthesized using bamboo leaves ash as reusable photocatalyst. Arabian Journal of Chemistry, 14(3), 102973. DOI: 10.1016/j.arabjc.2020.102973
  33. Nguyen, Q.N.K., Yen, N.T., Hau, N.D., Tran, H.L. (2020). Synthesis and Characterization of Mesoporous Silica SBA-15 and ZnO/SBA-15 Photocatalytic Materials from the Ash of Brickyards. Journal of Chemistry, 2020, 8456194. DOI: 10.1155/2020/8456194
  34. Zhiqiang, S., Zhang, J., Han, Y., Hun, B., Yi, L., Zhang, H., Zhao, Y. (2022). Mechanisme of frezing silica gel reaction induced by compaction pressure of ice crystals. Materials Letters, 292, 129654. DOI: 10.1016/j.matlet.2021.129654
  35. Abdul-Kadhim, W., Deraman, M.A., Abdullah, S.B., Tajuddin, S.N., Yusoff, M.M., Taufiq-Yap, Y.H., Rahim, M.H.A. (2017). Efficient and reusable iron-zinc oxide catalyst for oxidative desulfurization of model fuel. Journal of Environmental Chemical Engineering, 5(2), 1645–1656. DOI: 10.1016/j.jece.2017.03.001
  36. Ulfa, M., Prasetyoko, D., Bahruji, H., Trisunaryanti, W., Nimah, Y.L. (2020). Synthesis of ordered nanoarrays activated carbon using SBA-15 as hard template for adsorption of ibuprofen. Malaysian Journal of Analytical Sciences, 24(6), 992–1001. DOI: 10.1015/mjas.2020.127810
  37. Wei, X., Wang, X., Pu, Y., Liu, A., Chen, C., Zou, W., Zheng, Y., Huang, J., Zhang, Y., Yang, Y., Naushad, M., Gao, B., Dong, L. (2021). Facile ball-milling synthesis of CeO2/g-C3N4 Z-scheme heterojunction for synergistic adsorption and photodegradation of methylene blue: Characteristics, kinetics, models, and mechanisms. Chemical Engineering Journal, 420, 127719. DOI: 10.1016/j.cej.2020.127719
  38. Pouretedal, H.R., Kadkhodaie, A. (2010). Synthetic CeO2 Nanoparticle Catalysis of Methylene Blue Photodegradation : Kinetics and Mechanism. Chinese Journal of Catalysis, 31 (11–12), 1328–1334. DOI: 10.1016/S1872-2067(10)60121-0
  39. Wei, J.Q., Chen, X.J., Wang, P.F., Han, Y.B., Xu, J.C., Hong, B., Jin, H.X., Jin, D.F., Peng, X.L., Li, J., Yang, Y.T., Ge, H.L., Wang, X.Q. (2018). High surface area TiO2/SBA-15 nanocomposites: Synthesis, microstructure and adsorption-enhanced photocatalysis. Chemical Physics, 510, 47–53. DOI: 10.1016/j.chemphys.2018.05.012
  40. Ingale, P., Knemeyer, K., Piernavieja Hermida, M., Naumann d’Alnoncourt, R., Thomas, A., Rosowski, F. (2020). Atomic Layer Deposition of ZnO on Mesoporous Silica: Insights into Growth Behavior of ZnO via In-Situ Thermogravimetric Analysis. Nanomaterials, 10, 981. DOI: 10.3390/nano10050981

Last update:

No citation recorded.

Last update:

No citation recorded.