skip to main content

Hydrothermal Synthesis and Photocatalytic Activity of NiO Nanoparticles under Visible Light Illumination

1Department of Physics, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India

2Nanotechnology & Catalysis Research Centre, University of Malaya, Kuala Lumpur 50603, Malaysia

3Department Chemistry, College of Natural and Computational Sciences, Debre Berhan University, Ethiopia

4 Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Kampus Terpadu UII, Jl. Kaliurang Km 14, Sleman, Yogyakarta, Indonesia

View all affiliations
Received: 17 Feb 2022; Revised: 11 Apr 2022; Accepted: 11 Apr 2022; Available online: 14 Apr 2022; Published: 30 Jun 2022.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2022 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image
Abstract

In this present study, Nickel oxide (NiO) nanoparticles (NPs) have been synthesized using the hydrothermal method and characterized using powder X-ray Diffraction (XRD), UV-vis and Fourier Transform Infra Red (FTIR) spectroscopies, Scanning Electron Microscopy (SEM), and Energy-Dispersive X-ray (EDX) methods. The result of the characterization indicates that the synthesized sample has a pure cubic phase of NiO with roughly spherical shape morphologies and respective estimated crystallinity and microstrain values of about 78% and 5.1. Test of the photocatalytic activity of the synthesized sample towards the model contaminant dye methylene blue (MB) shows a degradation efficiency of 46% in a period of 2 h under nature sunlight irradiation at natural pH and that the reaction could satisfactorily describe both pseudo-first-order and pseudo-second-order kinetic models. So, this synthesis method may potentially be used for the effective elimination of toxic organic pollutants from water and wastewater over prolonged exposure under natural sunlight without adding any oxidant or adjusting the pH of the reaction medium. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 

Fulltext View|Download
Keywords: Nickel oxide; Nanoparticles; Hydrothermal synthesis; Optical properties; Photocatalytic activity
Funding: University of Malaya Research Grant under contract RU001-2019, RU001-2020 and RU001-2021

Article Metrics:

  1. Ghorani-Azam, A., Riahi-Zanjani, B., Balali-Mood, M. (2016). Effects of air pollution on human health and practical measures for prevention in Iran. Journal of Research on Medical Sciences. 21 (65). DOI: 10.4103/1735-1995.189646
  2. Manisalidis, I., Stavropoulou, E., Stavropoulos, A., Bezirtzoglou, E. (2020). Environmental and Health Impacts of Air Pollution: A Review. Front Public Health. 8 (14). DOI: 10.3389/fpubh.2020.00014
  3. Abdel-Shafy, H.I., Mansour, M.S.M. (2018). Solid waste issue: Sources, composition, disposal, recycling, and valorization, Egyptian Journal of Petroleum, 27 (4), 1275-1290. DOI: 10.1016/j.ejpe.2018.07.003
  4. Chamas, A., Moon, H., Zheng, J., Qiu, Y., Tabassum, T., Jang, J.H., Abu-Omar, M., Scott, S.L., Suh, S. (2020). Degradation Rates of Plastics in the Environment, ACS Sustainable Chemistry & Engineering, 8 (9), 3494–3511. DOI: 10.1021/acssuschemeng.9b06635
  5. Thompson, R.C., Moore, C.J., vom Saal, F.S., Swan, S.H. (2009). Plastics, the environment and human health: current consensus and future trends. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 364 (1526), 2153-2166. DOI: 10.1098/rstb.2009.0053
  6. Briffa, J., Sinagra, E., Blundell, R. (2020). Heavy metal pollution in the environment and their toxicological effects on humans, Heliyon, 6 (9), e04691. DOI: 10.1016/j.heliyon.2020.e04691
  7. Hahladakis, J.N., Velis, C.A., Weber, R., Iacovidou, E., Purnell, P. (2018). An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling, Journal of Hazardous Materials, 344, 179-199. DOI: 10.1016/j.jhazmat.2017.10.014
  8. Gómez-Sanabria, A., Kiesewetter, G., Klimont, Z., Schoepp, W., Haberl, H. (2022). Potential for future reductions of global GHG and air pollutants from circular waste management systems. Nature Communications. 13, 106. DOI: 10.1038/s41467-021-27624-7
  9. Sharma, S., Bhattacharya, A. (2017). Drinking water contamination and treatment techniques. Appl. Water Sci. 7, 1043–1067. DOI: 10.1007/s13201-016-0455-7
  10. Jury, W.A., Vaux, H. Jr. (2005). The role of science in solving the world’s emerging water problems, PNAS, 102 (44), 15715–15720, DOI: 10.1073/pnas.0506467102
  11. Hunter, P.R., MacDonald, A.M., Carter, R.C. (2010). Water Supply and Health. PLoS Medicine, 7(11), e1000361. DOI: 10.1371/journal.pmed.1000361
  12. Howitt, P., Darzi, A., Yang, G.Z., Ashrafian, H., Atun, R., Barlow, J., Blakemore, A., Bull, A.M., Car, J., Conteh, L., Cooke, G.S., et al. (2012). Technologies for global health. The Lancet Commissions. 380 (9840), 507-535. DOI: 10.1016/S0140-6736(12)61127-1
  13. Boretti, A., Rosa, L. (2019). Reassessing the projections of the World Water Development Report. npj Clean Water, 2, 15. DOI: 10.1038/s41545-019-0039-9
  14. Dolan, F., Lamontagne, J., Link, R., Hejazi, M., Reed, P., Edmonds, J. (2021). Evaluating the economic impact of water scarcity in a changing world. Nature Communications, 12, 1915. DOI: 10.1038/s41467-021-22194-0
  15. Saravan, R.S, Muthukumaran, M., Mubashera, M., Abinaya, M., Prasath, P.V., Parthiban, R., Mohammad, F., Oh, W.C., Sagadevan, S. (2020). Evaluation of the photocatalytic efficiency of cobalt oxide nanoparticles towards the degradation of crystal violet and methylene violet dyes. Optik - International Journal for Light and Electron Optics, 207, 164428. DOI: 10.1016/j.ijleo.2020.164428
  16. Priya, R., Stanly, S., Dhanalekshmi, S.B., Mohammad, F., Al-Lohedan, H.A., Oh, W.C., Sagadevan, S. (2020). Comparative studies of crystal violet dye removal between semiconductor nanoparticles and natural adsorbents. Optik - International Journal for Light and Electron Optics, 206, 164281. DOI: 10.1016/j.ijleo.2020.164281
  17. Priya, R., Stanly, S., Kavitharani, K., Mohammad, F., Sagadevan, S. (2020). Highly effective photocatalytic degradation of methylene blue using PrO2-MgO nanocomposites under UV light. Optik - International Journal for Light and Electron Optics, 206, 164281. DOI: 10.1016/j.ijleo.2020.164318
  18. Mathialagan, A., Manavalan, M., Venkatachalam, K., Mohammad, F., Oh, W.C., Sagadevan, S. (2020). Fabrication and physicochemical characterization of g-C3N4/ZnO composite with enhanced photocatalytic activity under visible light. Optical Materials, 100, 109643. DOI: 10.1016/j.optmat.2019.109643
  19. Fatimah, I., Ardianti, S., Sahroni, I., Purwiandono, G., Sagadevan, S., Doong, R.-A. (2021). Visible light sensitized porous clay heterostructure photocatalyst of zinc-silica modified montmorillonite by using tris (2,2′-bipyridyl) dichlororuthenium. Applied Clay Science, 204, 106023. DOI: 10.1016/j.clay.2021.106023
  20. Fatimah, I., Fadillah, G., Sahroni, I., Kamari, A., Sagadevan, S., Dong, R.-A. (2021). Nanoflower-like composites of ZnO/SiO2 Synthesized using Bamboo Leaves Ash as Reusable Photocatalyst. Arabian Journal of Chemistry, 14, 3, 102973. DOI: 10.1016/j.arabjc.2020.102973
  21. Christy, A.J., Sagadevan, S., Nehru, L.C. (2021). Enhanced antibacterial and photocatalytic activities of nickel oxide nanostructures. Optik, 237, 166731. DOI: 10.1016/j.ijleo.2021.166731
  22. Hosny, N.M. (2011). Synthesis, characterization and optical band gap of NiO nanoparticles derived from anthranilic acid precursors via a thermal decomposition route. Polyhedron, 30, 470–476. DOI: 10.1016/j.poly.2010.11.020
  23. D'Amario, L., Föhlinger, J., Boschloo, G., Hammarström, L. (2018). Unveiling hole trapping and surface dynamics of NiO nanoparticles. Chemical science, 9, 223–230. DOI: 10.1039/C7SC03442C
  24. Rath, M.K., Acharya, S.K., Kim, B.H., Lee, K.T., Ahn, B.G. (2011). Photoluminescence properties of sesquioxide doped ceria synthesized by modified sol–gel route. Materials Letters, 65(6), 955–958. DOI: 10.1016/j.matlet.2011.01.004
  25. Nguyen, K., Hoa, N.D., Hung, C.M., Le, D.T.T., Van Duy, N., Van Hieu, N. (2018). A comparative study on the electrochemical properties of nanoporous nickel oxide nanowires and nanosheets prepared by a hydrothermal method. RSC Advances, 8, 19449–19455. DOI: 10.1039/C8RA02862A
  26. Zhang, X., Zhang, D., Ni, X., Song, J., Zhen, H. (2008). Synthesis and electrochemical properties of different sizes of the CuO particles, Journal of Nanoparticle Research, 10, 839–844. DOI: 10.1007/s11051-007-9320-9
  27. Allahyar, S., Taheri, M., Abharya, A., Mohammadi, K. (2017). Simple new synthesis of nickel oxide (NiO) in water using microwave irradiation. Journal of Materials Science: Materials in Electronics, 28, 2846–2851. DOI: 10.1007/s10854-016-5868-4
  28. Vidyasagar, C.C., Naik, Y.A., Venkatesha, T.G., Viswanatha, R. (2012). Solid-State Synthesis and Effect of Temperature on Optical Properties of CuO Nanoparticles. Nano-Micro Letters, 4(2), 73–77. DOI: 10.1016/j.powtec.2011.08.025
  29. Kumar, R.V., Diamant, Y., Gedanken, A. (2020). Sonochemical Synthesis and Characterization of Nanometer-Size Transition Metal Oxides from Metal Acetates. Chemistry of Materials, 12(8), 2301–2305. DOI: 10.1021/cm000166z
  30. Fazlali, F., Mahjoub, A.R., Abazari, R. (2015). A new route for synthesis of spherical NiO nanoparticles via emulsion nano-reactors with enhanced photocatalytic activity. Solid State Sciences, 48, 263–269. DOI: 10.1016/j.solidstatesciences.2015.08.022
  31. Miri, A., Mahabbati, F., Najafidoust, A., Miri, M.J., Sarani, M. (2022). Nickel oxide nanoparticles: biosynthesized, characterization and photocatalytic application in degradation of methylene blue dye. Inorganic and Nano-Metal Chemistry, 52, 122–131. DOI: 10.1080/24701556.2020.1862226
  32. Yáñez-Vilar, S., Sánchez-Andújar, M., Gómez-Aguirre, C., Mira, J., Señarís-Rodríguez, M.A., Castro-García, S. (2009). A simple solvothermal synthesis of MFe2O4 (M=Mn, Co and Ni) nanoparticles. Journal of Solid-State Chemistry, 182, 2685–2690. DOI: 10.1016/j.jssc.2009.07.028
  33. Revellame, E.D., Fortela, D.L., Sharp, W., Hernandez, R., Zappi, M.E. (2020). Adsorption kinetic modeling using pseudo-first order and pseudo-second order rate laws: A review. Cleaner Engineering and Technology, 1, 100032. DOI: 10.1016/j.clet.2020.100032
  34. Weldegebrieal, G.K. (2020). Synthesis method, antibacterial and photocatalytic activity of ZnO nanoparticles for azo dyes in wastewater treatment: A review. Inorganic Chemistry Communication, 120, 108140. DOI: 10.1016/j.inoche.2020.108140
  35. Weldegebrieal, G.K., Dube, H.H., Sibhatu, A.K. (2021). Photocatalytic activity of CdO/ZnO nanocomposite for methylene blue dye and parameters optimisation using response surface methodology. International Journal of Environmental Analytical Chemistry, 1–23. DOI: 10.1080/03067319.2021.1949589

Last update:

No citation recorded.

Last update:

No citation recorded.