skip to main content

Effect of Polymer Concentration on the Photocatalytic Membrane Performance of PAN/TiO2/CNT Nanofiber for Methylene Blue Removal through Cross-Flow Membrane Reactor

1Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta, Indonesia

2Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta, Indonesia

3Department of Chemistry, Faculty of Science and Mathematics, Universitas Diponegoro, Semarang, Indonesia

Received: 15 Feb 2022; Revised: 13 Apr 2022; Accepted: 14 Apr 2022; Available online: 15 Apr 2022; Published: 30 Jun 2022.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2022 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image

A photocatalytic membrane combining photocatalyst and membrane technology based on polyacrylonitrile (PAN) and TiO2/CNT has been developed. Such combination is to overcome fouling formation on the membrane, thus prolonging the membrane lifetime and enhancing the efficiency on the waste treatment. PAN nanofiber was prepared by electrospinning method. The precursor solution was dissolved PAN and dispersed TiO2/CNT in N,N-Dimethylformamide (DMF). PAN concentration in the precursor solution was varied at 4.5, 5.5, 6.5, 7.5, and 8.5%. The effect of PAN concentration on the fiber morphology and pore size was discussed. The performance of the resulted membrane on methylene blue (MB) removal was also investigated on a cross-flow system. SEM images of the resulted membrane identified that PAN nanofiber was successfully fabricated with random orientation. The PAN 6.5% showed the highest diffraction intensity of the anatase crystalline phase of TiO2. The additions of CNT and TiO2 lead to the formation of a cluster of beads as confirmed by TEM. Increasing the concentration of PAN increased the fiber diameter from 206 to 506 nm, slightly decreased the surface area and pore size, respectively, from 32.739 to 21.077 m2.g1 and from 6.38 to 4.75 nm. The PAN/TiO2/CNT nanofibers show type IV of the adsorption-desorption N2 isotherms with the H1 hysteresis loops. Membrane PAN/TiO2/CNT at PAN concentration of 6.5% shows the optimum performance on the MB color removal by maintaining the percentage of rejection (%R) at 90% for 240 min and permeability of 750 LMH. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (


Fulltext View|Download
Keywords: Photocatalytic Membrane; PAN; TiO2; Nanofiber; Electrospinning
Funding: Ministry of the Higher Education Republic of Indonesia under contract 2337/UN1/DITLIT/DIT-LIT/PT/2021 and RTA 2019

Article Metrics:

  1. Ong, S., Keng, P., Lee, W., Ha, S., Hung, Y. (2011). Dye Waste Treatment. Water, 3, 157-176. DOI: 10.3390/w3010157
  2. Samsami, S., Mohamadi, M., Sarrafzadeh, M. H., Rene, E.R., Firoozbahr, M. (2020). Recent advances in the treatment of dye-containing wastewater from textile industries: Overview and perspectives. Process Safety and Environmental Protection, 143, 138–163. DOI: 10.1016/j.psep.2020.05.034
  3. Molinari, R., Lavorato, C., Argurio, P. (2017). Recent progress of photocatalytic membrane reactors in water treatment and in synthesis of organic compounds. A review. Catalysis Today, 281, 144–164. DOI: 10.1016/j.cattod.2016.06.047
  4. Fane, A.G. (2007). Sustainability and membrane processing of wastewater for reuse. Desalination, 202, 53–58. DOI: 10.1016/j.desal.2005.12.038
  5. Abdelrasoul, A., Doan, H., Lohi, A. (2013). Fouling in Membrane Filtration and Remediation Methods. In H. Nakajima, Mass Transfer - Advances in Sustainable Energy and Environment Oriented Numerical Modeling. IntechCopen. DOI: 10.5772/52370
  6. Leong, S., Razmjou, A., Wang, K., Hapgood, K., Zhang, X., Wang, H. (2014). TiO2 based photocatalytic membranes : A review. Journal of Membrane Sciences, 472, 167–184. DOI: 10.1016/j.memsci.2014.08.016
  7. Shi, Y., Huang, J., Zeng, G., Cheng, W., Hu, J. (2019). Photocatalytic membrane in water purification: is it stepping closer to be driven by visible light? Journal of Membrane Science, 584, 364–392. DOI: 10.1016/j.memsci.2019.04.078
  8. Goei, R., Dong, Z., Lim, T.T. (2013). High-permeability pluronic-based TiO2 hybrid photocatalytic membrane with hierarchical porosity: Fabrication, characterizations and performances. Chemical Engineering Journal, 228, 1030–1039. DOI: 10.1016/j.cej.2013.05.068
  9. Basavarajappa, P.S., Patil, S.B., Ganganagappa, N., Reddy, K.R., Raghu, A.V., Reddy, C.V. (2020). Recent progress in metal-doped TiO2, non-metal doped/codoped TiO2 and TiO2 nanostructured hybrids for enhanced photocatalysis. International Journal of Hydrogen Energy, 45(13), 7764–7778. DOI: 10.1016/j.ijhydene.2019.07.241
  10. Shaban, M., Ashraf, A.M., Abukhadra, M.R. (2018). TiO2 Nanoribbons/Carbon Nanotubes Composite with Enhanced Photocatalytic Activity; Fabrication, Characterization, and Application. Scientific Reports, 8, 781. DOI: 10.1038/s41598-018-19172-w
  11. Olowoyo, J.O., Kumar, M., Jain, S.L., Babalola, J.O., Vorontsov, A.V., Kumar, U. (2019). Insights into Reinforced Photocatalytic Activity of the CNT-TiO2 Nanocomposite for CO2 Reduction and Water Splitting. Journal of Physical Chemistry C, 123(1), 367–378. DOI: 10.1021/acs.jpcc.8b07894
  12. Tritschler, U., Gwyther, J., Harniman, R.L., Whittell, G.R., Winnik, M.A., Manners, I. (2018). Toward Uniform Nanofibers with a π-Conjugated Core: Optimizing the “living” Crystallization-Driven Self-Assembly of Diblock Copolymers with a Poly(3-octylthiophene) Core-Forming Block. Macromolecules, 51(14), 5101–5113. DOI: 10.1021/acs.macromol.8b00488
  13. Cheng, K.C.K., Bedolla-Pantoja, M.A., Kim, Y.K., Gregory, J.V., Xie, F., De France, A., Hussal, C., Sun, K., Abbott, N.L., Lahann, J. (2018). Templated nanofiber synthesis via chemical vapor polymerization into liquid crystalline films. Science, 362(6416), 804–808. DOI: 10.1126/science.aar8449
  14. Shen, C., Wang, C.P., Sanghadasa, M., Lin, L. (2017). Flexible micro-supercapacitors prepared using direct-write nanofibers. RSC Advances, 7(19), 11724–11731. DOI: 10.1039/c6ra28218k
  15. Zhang, Z.M., Duan, Y.S., Xu, Q., Zhang, B. (2019). A review on nanofiber fabrication with the effect of high-speed centrifugal force field. Journal of Engineered Fibers and Fabrics, 14, 1–11. DOI: 10.1177/1558925019867517
  16. Rezaei, M., Warsinger, D.M., Lienhard V.J.H., Duke, M.C., Matsuura, T., Samhaber, W.M. (2018). Wetting phenomena in membrane distillation: Mechanisms, reversal, and prevention. Water Research, 139, 329–352. DOI: 10.1016/j.watres.2018.03.058
  17. Mu, T., Huang, J., Liu, Z., Li, Z., Han, B. (2006). Solvothermal synthesis of carbon nitrogen nanotubes and nanofibers. Journal of Materials Research, 21(7), 1658–1663. DOI: 10.1557/jmr.2006.0209
  18. Tarus, B., Fadel, N., Al-Oufy, A., El-Messiry, M. (2016). Effect of polymer concentration on the morphology and mechanical characteristics of electrospun cellulose acetate and poly (vinyl chloride) nanofiber mats. Alexandria Engineering Journal, 55(3), 2975–2984. DOI: 10.1016/j.aej.2016.04.025
  19. Omollo, E., Zhang, C., Mwasiagi, J.I., Ncube, S. (2016). Electrospinning cellulose acetate nanofibers and a study of their possible use in high-efficiency filtration. Journal of Industrial Textiles, 45(5), 716–729. DOI: 10.1177/1528083714540696
  20. Liu, H., Gough, C.R., Deng, Q., Gu, Z., Wang, F., Hu, X. (2020). Recent advances in electrospun sustainable composites for biomedical, environmental, energy, and packaging applications. International Journal of Molecular Sciences, 21(11), 4019. DOI: 10.3390/ijms21114019
  21. Sriyanti, I., Edikresnha, D., Rahma, A., Munir, M.M., Rachmawati, H., Khairurrijal, K. (2017). Correlation between Structures and Antioxidant Activities of Polyvinylpyrrolidone/ Garcinia mangostana L. Extract Composite Nanofiber Mats Prepared Using Electrospinnin. Journal of Nanomaterials, 2017, 9687896. DOI: 10.1155/2017/9687896
  22. Tungprapa, S., Puangparn, T., Weerasombut, M., Jangchud, I., Fakum, P., Semongkhol, S., Meechaisue, C., Supaphol, P. (2007). Electrospun cellulose acetate fibers: Effect of solvent system on morphology and fiber diameter. Cellulose, 14(6), 563–575. DOI: 10.1007/s10570-007-9113-4
  23. Makaremi, M., Lim, C.X., Pasbakhsh, P., Lee, S.M., Goh, K.L., Chang, H., Chan, E.S. (2016). Electrospun functionalized polyacrylonitrile-chitosan Bi-layer membranes for water filtration applications. RSC Advances, 6(59), 53882–53893. DOI: 10.1039/c6ra05942b
  24. Vinh, N.D., Kim, H.M. (2016). Electrospinning fabrication and performance evaluation of polyacrylonitrile nanofiber for air filter applications. Applied Sciences (Switzerland), 6(9), 235. DOI: 10.3390/app6090235
  25. Gu, S.Y., Ren, J., Wu, Q.L. (2005). Preparation and structures of electrospun PAN nanofibers as a precursor of carbon nanofibers. Synthetic Metals, 155(1), 157–161. DOI: 10.1016/j.synthmet.2005.07.340
  26. Cordoba, A., Saldias, C., Urz, M., Montalti, M., Guernelli, M., Focarete, M.L., Leiva, A. (2022). On the Versatile Role of Electrospun Polymer Nanofibers as Photocatalytic Hybrid Materials Applied to Contaminated Water Remediation : A Brief Review. Nanomaterials, 12(756), 1–28. DOI: 10.3390/nano12050756
  27. Kim, S.J., Im, J.S., Kang, P.H., Kim, T.J., Lee, Y.S. (2008). Photo Catalytic Activity of CNT-TiO2 Nano Composite in Degrading Anionic and Cationic Dyes. Carbon Letters, 9(4), 294–297. DOI: 10.5714/cl.2008.9.4.294
  28. Deitzel J.M., Kleinmeyer, J., Harris, N.C.B.T. (2001). The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer, 42, 261–272. DOI: 10.1016/S0032-3861(00)00250-0
  29. Yar, A., Haspulat, B., Üstün, T., Eskizeybek, V., Avci, A., Kamiş, H., Achour, S. (2017). Electrospun TiO2/ZnO/PAN hybrid nanofiber membranes with efficient photocatalytic activity. RSC Advances, 7(47), 29806–29814. DOI: 10.1039/c7ra03699j
  30. Hastuti, L.P., Kusumaatmaja, A., Darmawan, A., Kartini, I. (2022). Visible-Light Responsive Photocatalytic Membrane of TiO2/CNT Decorated PAN Nanofibers with Enhanced Performance under Low-Energy Exposure. Energy & Environment, under review
  31. Woan, K., Pyrgiotakis, G., Sigmund, W. (2009). Photocatalytic carbon-nanotube-TiO2 composites. Advanced Materials, 21(21), 2233–2239. DOI: 10.1002/adma.200802738
  32. Wongaree, M., Chiarakorn, S., Chuangchote, S., Sagawa, T. (2016). Photocatalytic performance of electrospun CNT/TiO2 nanofibers in a simulated air purifier under visible light irradiation. Environmental Science and Pollution Research, 23(21), 21395–21406. DOI: 10.1007/s11356-016-7348-z
  33. Lombardi, M., Palmero, P., Sangermano, M., Varesano, A. (2011). Electrospun polyamide-6 membranes containing titanium dioxide as photocatalyst. Polymer International, 60(2), 234–239. DOI: 10.1002/pi.2932
  34. Cossich, E., Bergamasco, R., Pessoa De Amorim, M.T., Martins, P.M., Marques, J., Tavares, C.J., Lanceros-Méndez, S., Sencadas, V. (2015). Development of electrospun photocatalytic TiO2-polyamide-12 nanocomposites. Materials Chemistry and Physics, 164, 91–97. DOI: 10.1016/j.matchemphys.2015.08.029

Last update:

No citation recorded.

Last update:

No citation recorded.