skip to main content

Numerical Study of a Water Gas Shift Fixed Bed Reactor Operating at Low Pressures

1Laboratory of Process Engineering, Department of Chemical Engineering, National School of Applied Sciences, Sultan Moulay Slimane University, Bd Béni Amir, BP 77, 25000, Khouribga, Morocco

2Laboratory of Materials, Processes, Environment and Quality (LMPEQ), National School of Applied Sciences, Cadi Ayyad University, Route Sidi Bouzid BP 63, 46000 Safi, Morocco

3Laboratory of Process Engineering, Department of Computer Science and Mathematics, National School of Applied Sciences, Sultan Moulay Slimane University, Bd Béni Amir, BP 77, 25000, Khouribga, Morocco

Received: 26 Jan 2022; Revised: 26 Feb 2022; Accepted: 4 Mar 2022; Available online: 9 Mar 2022; Published: 30 Jun 2022.
Editor(s): Dmitry Murzin
Open Access Copyright (c) 2022 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image

Today, hydrogen has become one of the most promising clean energy. Several processes allow obtaining hydrogen, among them there is the Water Gas Shift (WGS) reaction. On an industrial scale, WGS reaction takes place at high pressure [25–35 bar]. At high pressure, the cost of the process rises due to the energy consumed by compression, and the reduction in the lifetime of the equipment and the catalyst. At low pressures, catalyst lifetime can reach many years and the energy cost is reduced. It is for this reason that we are interested in modelling and simulation of a WGS converter operating at low pressures close to atmospheric pressure. In this work, a numerical study was conducted in order to determine the conditions allowing good rector operating at low pressure. A number of drawbacks of the process were identified. These drawbacks are essentially the non-negligible pressure drops and the strong intraparticle diffusion resistances. The prediction of the concentrations and the reaction rate within the pellet showed that the active zone of the pellet is located near the particle surface. It has also been shown that the resistances to interfacial mass and heat transfer are insignificant. The study of pressure effect showed that the pressure increase reduces the required catalyst mass to achieve equilibrium. Finally, this work revealed that the decrease in temperature and the increase in the concentrations of the reactants by increasing their fluxes, make it possible to increase the effectiveness factor of the catalyst and the conversion of carbon monoxide. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (


Fulltext View|Download
Keywords: Diffusion resistances; Effectiveness factor; Fixed bed; Orthogonal collocation; Thiele’s modulus.
Funding: Moroccan Ministry of Higher Education, Scientific Research and Innovation

Article Metrics:

  1. Chen, W.H., Lin, M.R., Jiang, T.L., Chen, M.H. (2008). Modeling and simulation of hydrogen generation from high temperature and low-temperature water gas shift reactions. International Journal of Hydrogen Energy, 33, 6644–6656. DOI: 10.1016/j.ijhydene.2008.08.039
  2. Callaghan, C.A. (2006). Kinetics and Catalysis of the Water-Gas-Shift Reaction: A Microkinetic and Graph Theoretic Approach. Ph.D. Dissertation, Department of Chemical Engineering, Worcester Polytechnic Institute
  3. Smith, R.J., Loganathan, M., Shantha,M. S.(2010). A Review of the Water Gas Shift Reaction Kinetics. International Journal of Chemical Reactor Engineering, 8, 1–32. DOI: 10.2202/1542-6580.2238
  4. Giunta, P., Amadeo, N., Laborde, M. (2006). Simulation of a low temperature water gas shift reactor using the heterogeneous model/application to a pem fuel cell. Journal of Power Sources, 156, 489–496. DOI: 10.1016/j.jpowsour.2005.04.036
  5. Lang, C. (2016). Développement de catalyseurs pour la réaction de conversion du gaz à l’eau dans le cadre de la production d’hydrogène par vapogazéification de la biomasse. Ph.D. Dissertation, Institut de Chimie et Procédés pour l'énergie, l'environnement et la santé, Strasbourg University
  6. Lee, S.B., Cho, W., Park, D.K., Yoon, E.S. (2006). Simulation of fixed bed reactor for dimethyl ether synthesis. Korean Journal of Chemical Engineering, 23, 522–530. DOI: 10.1007/BF02706789
  7. Raje ,A., Inga, J. R., Davis, B.H. (1997). Fischer-Tropsch synthesis: process considerations based on performance of iron-based catalysts. Fuel, 76, 273–280. DOI: 10.1016/S0016-2361(96)00185-8
  8. Skrzypek, J., Lachowska, M., Grzesik, M., Słoczyński, J., Novak, P. (1995). Thermodynamics and kinetics of low-pressure methanol synthesis. The Chemical Engineering Journal, 58, 101–108. DOI: 10.1016/0923-0467(94)02955-5
  9. Schumacher, N., Boisen, A., Dahl,S., Gokhale,A., Kandoi,S., Grabow, L., Dumesic, J., Mavrikakis, M., Chorkendorff, I. (2005). Trends in Low-Temperature Water-Gas Shift Reactivity on Transition Metals. Journal of Catalysis, 229, 265–275. DOI: 10.1016/j.jcat.2004.10.025
  10. Bohlbro, H. (1964). The kinetics of the Water-Gas Conversion IV. Influence of Alkali on the Rate Equation. Journal of Catalysis, 3, 207–215. DOI : 10.1016/0021-9517(64)90168-X
  11. Keiski, R.L., Salmi, T., Pohjola, V.J. (1992). Development and verification of a simulation model for a non-isothermal water gas-shift reactor. The Chemical Engineering Journal, 48, 17–29. DOI: 10.1016/0300-9467(92)85003-R
  12. Keiski, R.L., Desponds, O., Chang, Y.F., Somorjai, G.A. (1993). Kinetics of the water-gas shift reaction over sevral alkane activation and water-gas shift catalyst. Applied Catalysis A: General, 101, 317–338. DOI: 10.1016/0926-860X(93)80277-W
  13. Koryabkina, N.A., Phatak, A.A., Ruettinger, W.F., Farrauto, R.J., Ribeiro, F.H. (2003). Determination of kinetic parameters for the water-gas-shift reaction on copper catalysts under realistic conditions for fuel cell applications. Journal of Catalysis, 217, 233–239. DOI: 10.1016/S0021-9517(03)00050-2
  14. Hla, S.S., Park, D., Duffy, G.J., Edwards, J.H., Roberts, D.G. (2009). Kinetics of high-temperature water-gas shift reaction over two iron-based commercial catalysts using simulated coal-derived syngases. Chemical Engineering Journal, 146, 148–154. DOI: 10.1016/j.cej.2008.09.023
  15. Adams, T.A., Barton, P.I. (2009). A dynamic two-dimensional heterogeneous model for water gas shift reactors. International Journal of Hydrogen Energy, 34, 8877–8891. DOI: 10.1016/j.ijhydene.2009.08.045
  16. Maklavany, D.M., Shariati, A., Nikou, M.R.K., Roozbehani, B. (2017). Hydrogen Production via Low Temperature Water Gas Shift Reaction: Kinetic Study, Mathematical Modeling, Simulation and Optimization of Catalytic Fixed Bed Reactor using gPROMS. Chemical Product and Process Modeling. 12, 20160063. DOI: 10.1515/cppm-2016-0063
  17. Hwang, S., Smith, R. (2004). Heterogeneous catalytic reactor design with optimum temperature profile I: application of catalyst dilution and side-stream distribution. Chemical Engineering Science, 59, 4229–4243. DOI: 10.1016/j.ces.2004.05.037
  18. Elnashaie, S.S.E.H., Alhabdan, F.M. (1989). Mathematical modelling and computer simulation of industrial Water-Gas Shift Converters. Mathematical and Computer Modelling, 12, 1017–1034. DOI: 10.1016/0895-7177(89)90208-2
  19. van Dijk, H.A.J., Cohen, D., Hakeem, A.A., Makkee, M., Damen, K. (2014). Validation of a water–gas shift reactor model based on a commercial FeCr catalyst for pre-combustion CO2 capture in an IGCC power plant. International Journal of Greenhouse Gas Control, 29, 82–91. DOI: 10.1016/j.ijggc.2014.07.005
  20. Rosner, F., Rao, A., Samuelsen, S. (2020). Water gas shift reactor modelling and new dimensionless number for thermal management/design of isothermal reactors. Applied Thermal Engineering, 173, 1–19. DOI: 10.1016/j.applthermaleng.2020.115033
  21. Francesconi, J.A., Mussati, M.C., Aguirre, P.A. (2007). Analysis of design variables for water-gas-shift reactors by model-based optimization. Journal of Power Sources, 173, 467–477. DOI: 10.1016/j.jpowsour.2007.04.048
  22. Davis, M.E., Davis, R.J. (2003). Fundamentals of Chemical Reaction Engineering. Edition. New York: McGraw-Hill Companies
  23. Marin, P., Diez, F.V., Ordonez, S. (2012). Fixed bed membrane reactors for WGSR- based hydrogen production: Optimisation of modelling approaches and reactor performance. International Journal of Hydrogen Energy, 37, 4997–5010. DOI: 10.1016/j.ijhydene.2011.12.027
  24. Saw, S.Z., Nandong, J. (2016). Simulation and control of water-gas shift packed bed reactor with inter-stage cooling. IOP Conf. Series: Materials science and Engineering, 121, 1–10. DOI: 10.1088/1757-899X/121/1/012022
  25. Soit, A.C., Dumbrava, I., Sandu, V.C., Cormos, A.M. (2019). Modelling and Simulation of Water Gaz Shift Reactor Using Comsol Multiphysics. Studia UBB Chemia, LXIV, 4, 19–29. DOI: 10.24193/subbchem.2019.4.02
  26. Levent, M. (2001). Water–gas shift reaction over porous catalyst: temperature and reactant concentration distribution. International Journal of Hydrogen Energy, 26, 551–558. DOI: 10.1016/S0360-3199(00)00116-6
  27. Hallac, B.B. (2014). Kinetic Experimental and Modeling Studies on Iron-Based Catalysts Promoted with Lanthana for the High-Temperature Water-Gas Shift Reaction Characterized with Operando UV-Visible Spectroscopy and for the Fischer-Tropsch Synthesis. Ph.D. Dissertation, Department of Chemical Engineering, Brigham Young University
  28. El-Bazi, W., El-Abidi, A., Kadiri, M.S., Yadir, S. (2018). Modeling and Simulation of a Water Gas Shift Reactor operating at a low pressure. International Journal of Innovation Engineering and Science Research, 2, 47–57
  29. Atwood, K., Arnold, M.R., Appel, E.G. (1950). Water-Gas Shift Reaction. Effect of Pressure on Rate over an Iron- Oxide-Chromium Oxide Catalyst. Industrial & Engineering Chemistry, 42, 1600–1602. DOI: 10.1021/ie50488a038
  30. Villermaux, J. (1993). Génie de la réaction chimique. Edition. Paris: Tec & Doc Lavoisier
  31. Ducamp, J., Bengaouer, A., Baurens, P., Fechete, I., Turek, P.T., Garin, F. (2018). Statu quo sur la methanation du dioxyde de carbone: une revue de la littérature. Comptes Rendus Chimie, 21(3–4), 427–469. DOI: 10.1016/j.crci.2017.07.005
  32. Sanz, R., Calles, J.A., Alique, D., Furones, L., Ordonez, S., Marin, P. (2015). Hydrogen production in a Pore-Plated Pd-membrane reactor: Experimental analysis and model validation for the Water Gas Shift reaction. International Journal of Hydrogen Energy, 40, 3472–3484. DOI: 10.1016/j.ijhydene.2014.11.120
  33. Santacesaria, E., Tesser, R. (2018). The Chemical Reactor from Laboratory to Industrial Plant : A Modern Approach to Chemical Reaction Engineering with Different Case Histories and Exercises. Edition. Cham: Springer
  34. Wakao, N., Kaguei. S., Funazkri, T. (1979). Effect of fluid dispersion coefficients on particle-to-fluid heat transfer coefficients in packed-beds – Correlation of Nusselt numbers. Chemical Engineering Science, 34, 325–336. DOI: 10.1016/0009-2509(79)85064-2
  35. Villadsen, J.V., Stewart, W.E. (1967). Solution of boundary-value problems by orthogonal collocation. Chemical Engineering Science, 22, 1483–1501. DOI: 10.1016/0009-2509(67)80074-5
  36. Dumez, F.J., Forment, G.F. (1976). Dehydrogenation of 1-Butene into Butadiene. Kinetics, Catalyst Coking, and Reactor Design. Industrial & Engineering Chemistry Process Design and Development, 15, 291–301. DOI: 10.1021/i260058a014
  37. Forment, G.F., Bischoff, K.B., Wilde, J.D. (2010). Chemical Reactor Analysis and Design. Edition. Hoboken: John Wiley & Sons, Inc
  38. Missen, R.W., Mims, C.A., Saville, B.A. (1999). Introduction to Chemical Reaction Engineering And Kinetics. Edition. Danvers: John Wiley & Sons
  39. Mendes, D., Chibante, V., Mendes, A. Madeira, L.M. (2010). Determination of the Low-Temperature Water-Gas Shift Reaction Kinetics Using a Cu-Based Catalyst. Industrial & Engineering Chemistry Research, 49, 11269–11279. DOI: 10.1021/ie101137b
  40. Zhang, L., Zhang, H.T., Ying, W.Y., Fang, D.Y. (2014). The Simulation of an Industrial Fixed Bed Reactor for Methanol Dehydration to Dimethyl Ether. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 36, 2166–2174. DOI: 10.1080/15567036.2012.750404
  41. Chabot, G., Guilet, R., Cognet, P., Gourdon, P. (2015). A mathematical modeling of catalytic milli-fixed bed reactor for Fischer–Tropsch synthesis: Influence of tube diameter on Fischer-Tropsch selectivity and thermal behavior. Chemical Engineering Science, 127, 72–83. DOI: 10.1016/j.ces.2015.01.015

Last update:

No citation recorded.

Last update:

No citation recorded.