Synthesis and Structure of 2D Cobalt(II)-tartrate Hydrate Coordination Polymers Crystallised from Aqueous Solution

Mohammad Misbah Khunur  -  Department of Chemistry, Brawijaya University, Jl. Veteran 01 Malang, Indonesia
*Yuniar Ponco Prananto scopus  -  Department of Chemistry, Brawijaya University, Jl. Veteran 01 Malang, Indonesia
Received: 17 Jul 2017; Revised: 30 Oct 2017; Accepted: 30 Oct 2017; Published: 1 Aug 2018; Available online: 11 Jun 2018.
Open Access Copyright (c) 2018 Bulletin of Chemical Reaction Engineering & Catalysis
License URL: http://creativecommons.org/licenses/by-sa/4.0

Citation Format:
Cover Image
Abstract

Cobalt(II)-tartrate hydrate coordination polymer is successfully crystallisedfrom aqueous solution at room temperature. Unlike previous methods, diammonium tartrate was used and reacted directly with an aqueous solution of cobalt(II). Single crystal X-ray and ATR-IR analyses were performed toward the synthesized crystal. The crystal structure displaysa (6,3) 2D sheet which then grow into a 3D hydrogen-bonded network. Tetra- and hexa-dentate dianionic tartaric ligands are observed in the crystal structure, in which the hexadentate ligand connects four different cobalt centres. This method is considered feasible, affordable, and simple for the production of functional polymeric cobalt(II)-tartrate hydrate. Copyright © 2018 BCREC Group. All rights reserved

Received: 17th July 2017; Revised: 30th October 2017; Accepted: 30th October 2017; Available online:   11st June 2018; Published regularly: 1st August 2018

How to Cite: Khunur, M.M., Prananto, Y.P. (2018). Synthesis and Structure of 2D Cobalt(II)-tartrate Hydrate Coordination Polymers Crystallised from Aqueous Solution. Bulletin of Chemical Reaction Engineering & Catalysis, 13 (2): 213-219 (doi:10.9767/bcrec.13.2.1342.213-219)

Keywords: Diammonium tartrate; coordination polymers; aqueous solution; crystal structure; cobalt(II) tartrate.
Funding: Chemistry Department, Brawijaya University

Article Metrics:

  1. Batten, S.R., Champness, N.R., Chen, X.M., Garcia-Martinez, J., Kitagawa, S., Öhrström, L., O'Keeffe, M., Suh, M.P., Reedijk, J. (2012). Coordination Polymers, Metal-organic Frameworks and the Need for Terminology Guidelines. Crystal Engineering Communication, 14: 3001-3004
  2. Batten, S.R. (2006). Coordination Polymers, in Encyclopedia of Supramolecular Chemistry, Eds: Atwood J.L. and Steed, J.W. Marcel Dekker, New York, USA. 1-13
  3. Steed, J.W., Turner, D.R., Wallace, K.J. (2007). Core Concepts in Supramolecular Chemistry and Nanochemistry. John Wiley and Sons, Ltd. Chichester, UK
  4. Batten, S.R., Neville, S.M., Turner, D.R. (2009). Coordination Polymers: Design, Analysis, and Application, Chapter 1. RSC Publishing. Cambridge, UK
  5. Prananto, Y.P., Turner, D.R., Lu, J., Batten, S.R. (2009). Solvent-Induced Structural Changes in Complexes of 1,2-Bis(3-(3-pyridyl)pyrazolyl)ethane, Australian Journal of Chemistry, 62 (2): 108–114
  6. Gimeno, N.,Vilar, R. (2006). Anions as Templates in Coordination and Supramolecular Chemistry, Coordination Chemistry Reviews, 250: 3161-3189
  7. Forster, P.M., Burbank, A.R., Livage, C., Férey, G., Cheetham, A.K. (2004). The Role of Temperature in The Synthesis of Hybrid Inorganic–organic Materials: The Example of Cobalt Succinates, Chemical Communication, 368-369
  8. Bacsa, J., Eve, D., Dunbar, K.R. (2005). Catena-Poly[[diaquacobalt(II)]-µ-Oxalato]. Acta Crystallographica. C61: m58-m60
  9. Bouaoud, Y., Setifi, Z., Buvailo, A., Potaskalov, V.A., Merazig, H., Denes, G. (2016). Crystal Structure of Poly[diaqua(µ-2-carboxyacetato-k3O,O’:O”)(2-carboxyacetato- kO)di-µ-chlorido-dicobalt(II)]. Acta Crystallographica. E72: 21-24
  10. Long, L-S., Chen, X-M., Tong, M-L., Sun, Z-G., Ren, Y-P., Huang, R-B., Zheng, L-S. (2001). A Unique Open Inorganic–Organic Framework with Alternate Hexa- and Penta-Coordinate Cobalt(II) Sites. Synthesis, Crystal Structure,and Magnetic Properties of [Co3(C4H4O4)2.5(OH)]n·0.5nH2O. Journal of Chemical Society, Dalton Transaction. 2888-2890
  11. Gu, Y., Yang, M. (2008). Synthesis, Characterization of An Unusual Crystalline Material with Tartrate. Crystal Research and Technology. 43 (12): 1331-1334
  12. Croitor, L., Chisca, D., Coropceanu, E.B., Volodina, G.F., Petuhov, O., Fonari, M.S. (2017). Solvent-rich Layered Cobalt(II) 1,4-benzenedicarboxylate Based on Binuclear {Co2(μ-OH2)(RCOO)2} Secondary Building Unit. Journal of Molecular Structure, 1137: 136-141
  13. Ramajothi, J., Danuskodi, S. (2003). Optical and Microhardness Studies of Semiorganic Nonlinear Optical Material: L‐histidine Tetrafluoroborate. Crystal Research and Technology, 38 (11): 986-991
  14. Cantrell, J.H. (2010). Handbook of Metrology, Chapter 7. Ultrasonics, Eds. Glaser, M., Kochsiek, M., Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany
  15. Gon, H.B. (1990). Ferroelectricity in Calcium Tartrate Single Crystals Grown by Gel Technique. Journal of Crystal Growth, 102: 501-504
  16. Desai, C.C., Patel, A.H. (1987). Some Aspects of Electrical Conductivity of Ferroelectric Rubidium Tartrate Single Crystals. Journal ofMaterial Science Letter, 6: 1066-1068
  17. Abdel-Kader, M.M., El-Kabbany, F., Taha, S., Abosehly, M., Tahoon, K.K., El-Sharkawy, A.A. (1991). Thermal and Electrical Properties of Ammonium Tartrate. Journal of Physics and Chemistry of Solids, 52 (5): 655-658
  18. Yadava, V.S., Padmanabhan, V.M. (1973). The Crystal Structure of Ammonium Tartrate. Acta Crystallographica. B29: 493-498
  19. Shajan, X.S., Mahadevan, C. (2005). FT-IR Spectroscopic and Thermal Studies on Pure and Impurity added Calcium Tartrate Tetrahydrate Crystals. Crystal Research and Technology, 40 (6): 598-602
  20. Prananto, Y.P., Khunur, M.M., Wahyuni, D.T., Shobirin, R.A., Nata, Y.R., Riskah, E. (2013). Study of Gel Growth Cobalt (II) Oxalate Crystals as Precursor of Co3O4 Nano Particles. Bulletin of Chemical Reaction Engineering & Catalysis, 7 (3): 198-204
  21. Mathivanan, V., Haris, M., Prasanya, T., Amgalan, M. (2014). Synthesis and Characterization of Gel-grown Cobalt Tartrate Crystals, Pramana - Journal of Physics, 82 (3): 537-548
  22. Nandre, S.J., Shitole, S.J., Ahire, R.R. (2013). FT-IR, Thermal and Optical Studies of Gel Grown Cobalt Tartrate Crystals, Journal of Nano and Electronic Physics, 5 (4): 04050-1–04050-5
  23. Desai, C.C., Patel, A.H. (1988). Crystal Data for Ferroelectric RbHC4H4O6 and NH4HC4H4O6 Crystals, Journal of Materials Science Letter, 7: 371-373
  24. Ariponnammal, S., Srinivasan, T. (2014). Growth and Spectroscopic Characterization of Cobalt Tartrate Crystals. Research Journal of Recent Sciences, 3: 63-66
  25. Du, C-J., Zhang, Q-A., Wang, L-S., Du, C-L. (2012). Diaquabis(hydrogentartrato)cobalt(II) dihydrate, Acta Crystallographica. E68: m99–m100
  26. Bruker AXS Ltd. (2005). APEX2. Madison. Wisconsin, USA
  27. Sheldrick, G.M. (1996). SADABS. University of Göettingen, Germany
  28. Sheldrick, G.M. (2008). A Short History of SHELX. Acta Crystallographica. A64: 112–122
  29. Sheldrick, G.M. (1997). SHELXS97, Program for the Solution of Crystal Structures. University of Göttingen, Germany
  30. Sheldrick, G.M. (1997). SHELXL97, Program for the Refinement of Crystal Structures. University of Göttingen, Germany
  31. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A.K., Puschmann, H. (2009). OLEX2: A Complete Structure Solution, Refinement, and Analysis Program. Journal of Applied Crystallography, 42: 339-341
  32. Lide, D.R. (2010). Dissociation Constants of Organic Acids and Bases, in CRC Handbook of Chemistry and Physics, 90th ed. (CD-ROM Version). CRC Press/Taylor and Francis, Boca Raton, Florida, USA

Last update: 2021-04-17 12:11:27

No citation recorded.

Last update: 2021-04-17 12:11:28

No citation recorded.