Synthesis and Structure of 2D Cobalt(II)-tartrate Hydrate Coordination Polymers Crystallised from Aqueous Solution

Mohammad Misbah Khunur  -  Department of Chemistry, Brawijaya University, Jl. Veteran 01 Malang, Indonesia
*Yuniar Ponco Prananto scopus  -  Department of Chemistry, Brawijaya University, Jl. Veteran 01 Malang, Indonesia
Received: 17 Jul 2017; Revised: 30 Oct 2017; Accepted: 30 Oct 2017; Published: 1 Aug 2018; Available online: 11 Jun 2018.
Open Access Copyright (c) 2018 Bulletin of Chemical Reaction Engineering & Catalysis
License URL:

Citation Format:
Cover Image

Cobalt(II)-tartrate hydrate coordination polymer is successfully crystallisedfrom aqueous solution at room temperature. Unlike previous methods, diammonium tartrate was used and reacted directly with an aqueous solution of cobalt(II). Single crystal X-ray and ATR-IR analyses were performed toward the synthesized crystal. The crystal structure displaysa (6,3) 2D sheet which then grow into a 3D hydrogen-bonded network. Tetra- and hexa-dentate dianionic tartaric ligands are observed in the crystal structure, in which the hexadentate ligand connects four different cobalt centres. This method is considered feasible, affordable, and simple for the production of functional polymeric cobalt(II)-tartrate hydrate. Copyright © 2018 BCREC Group. All rights reserved

Received: 17th July 2017; Revised: 30th October 2017; Accepted: 30th October 2017; Available online:   11st June 2018; Published regularly: 1st August 2018

How to Cite: Khunur, M.M., Prananto, Y.P. (2018). Synthesis and Structure of 2D Cobalt(II)-tartrate Hydrate Coordination Polymers Crystallised from Aqueous Solution. Bulletin of Chemical Reaction Engineering & Catalysis, 13 (2): 213-219 (doi:10.9767/bcrec.13.2.1342.213-219)

Keywords: Diammonium tartrate; coordination polymers; aqueous solution; crystal structure; cobalt(II) tartrate.

Article Metrics:

  1. Batten, S.R., Champness, N.R., Chen, X.M., Garcia-Martinez, J., Kitagawa, S., Öhrström, L., O'Keeffe, M., Suh, M.P., Reedijk, J. (2012). Coordination Polymers, Metal-organic Frameworks and the Need for Terminology Guidelines. Crystal Engineering Communication, 14: 3001-3004.
  2. Batten, S.R. (2006). Coordination Polymers, in Encyclopedia of Supramolecular Chemistry, Eds: Atwood J.L. and Steed, J.W. Marcel Dekker, New York, USA. 1-13.
  3. Steed, J.W., Turner, D.R., Wallace, K.J. (2007). Core Concepts in Supramolecular Chemistry and Nanochemistry. John Wiley and Sons, Ltd. Chichester, UK.
  4. Batten, S.R., Neville, S.M., Turner, D.R. (2009). Coordination Polymers: Design, Analysis, and Application, Chapter 1. RSC Publishing. Cambridge, UK.
  5. Prananto, Y.P., Turner, D.R., Lu, J., Batten, S.R. (2009). Solvent-Induced Structural Changes in Complexes of 1,2-Bis(3-(3-pyridyl)pyrazolyl)ethane, Australian Journal of Chemistry, 62 (2): 108–114.
  6. Gimeno, N.,Vilar, R. (2006). Anions as Templates in Coordination and Supramolecular Chemistry, Coordination Chemistry Reviews, 250: 3161-3189.
  7. Forster, P.M., Burbank, A.R., Livage, C., Férey, G., Cheetham, A.K. (2004). The Role of Temperature in The Synthesis of Hybrid Inorganic–organic Materials: The Example of Cobalt Succinates, Chemical Communication, 368-369.
  8. Bacsa, J., Eve, D., Dunbar, K.R. (2005). Catena-Poly[[diaquacobalt(II)]-µ-Oxalato]. Acta Crystallographica. C61: m58-m60.
  9. Bouaoud, Y., Setifi, Z., Buvailo, A., Potaskalov, V.A., Merazig, H., Denes, G. (2016). Crystal Structure of Poly[diaqua(µ-2-carboxyacetato-k3O,O’:O”)(2-carboxyacetato- kO)di-µ-chlorido-dicobalt(II)]. Acta Crystallographica. E72: 21-24.
  10. Long, L-S., Chen, X-M., Tong, M-L., Sun, Z-G., Ren, Y-P., Huang, R-B., Zheng, L-S. (2001). A Unique Open Inorganic–Organic Framework with Alternate Hexa- and Penta-Coordinate Cobalt(II) Sites. Synthesis, Crystal Structure,and Magnetic Properties of [Co3(C4H4O4)2.5(OH)]n·0.5nH2O. Journal of Chemical Society, Dalton Transaction. 2888-2890.
  11. Gu, Y., Yang, M. (2008). Synthesis, Characterization of An Unusual Crystalline Material with Tartrate. Crystal Research and Technology. 43 (12): 1331-1334.
  12. Croitor, L., Chisca, D., Coropceanu, E.B., Volodina, G.F., Petuhov, O., Fonari, M.S. (2017). Solvent-rich Layered Cobalt(II) 1,4-benzenedicarboxylate Based on Binuclear {Co2(μ-OH2)(RCOO)2} Secondary Building Unit. Journal of Molecular Structure, 1137: 136-141.
  13. Ramajothi, J., Danuskodi, S. (2003). Optical and Microhardness Studies of Semiorganic Nonlinear Optical Material: L‐histidine Tetrafluoroborate. Crystal Research and Technology, 38 (11): 986-991.
  14. Cantrell, J.H. (2010). Handbook of Metrology, Chapter 7. Ultrasonics, Eds. Glaser, M., Kochsiek, M., Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany.
  15. Gon, H.B. (1990). Ferroelectricity in Calcium Tartrate Single Crystals Grown by Gel Technique. Journal of Crystal Growth, 102: 501-504.
  16. Desai, C.C., Patel, A.H. (1987). Some Aspects of Electrical Conductivity of Ferroelectric Rubidium Tartrate Single Crystals. Journal ofMaterial Science Letter, 6: 1066-1068.
  17. Abdel-Kader, M.M., El-Kabbany, F., Taha, S., Abosehly, M., Tahoon, K.K., El-Sharkawy, A.A. (1991). Thermal and Electrical Properties of Ammonium Tartrate. Journal of Physics and Chemistry of Solids, 52 (5): 655-658.
  18. Yadava, V.S., Padmanabhan, V.M. (1973). The Crystal Structure of Ammonium Tartrate. Acta Crystallographica. B29: 493-498.
  19. Shajan, X.S., Mahadevan, C. (2005). FT-IR Spectroscopic and Thermal Studies on Pure and Impurity added Calcium Tartrate Tetrahydrate Crystals. Crystal Research and Technology, 40 (6): 598-602.
  20. Prananto, Y.P., Khunur, M.M., Wahyuni, D.T., Shobirin, R.A., Nata, Y.R., Riskah, E. (2013). Study of Gel Growth Cobalt (II) Oxalate Crystals as Precursor of Co3O4 Nano Particles. Bulletin of Chemical Reaction Engineering & Catalysis, 7 (3): 198-204.
  21. Mathivanan, V., Haris, M., Prasanya, T., Amgalan, M. (2014). Synthesis and Characterization of Gel-grown Cobalt Tartrate Crystals, Pramana - Journal of Physics, 82 (3): 537-548.
  22. Nandre, S.J., Shitole, S.J., Ahire, R.R. (2013). FT-IR, Thermal and Optical Studies of Gel Grown Cobalt Tartrate Crystals, Journal of Nano and Electronic Physics, 5 (4): 04050-1–04050-5.
  23. Desai, C.C., Patel, A.H. (1988). Crystal Data for Ferroelectric RbHC4H4O6 and NH4HC4H4O6 Crystals, Journal of Materials Science Letter, 7: 371-373.
  24. Ariponnammal, S., Srinivasan, T. (2014). Growth and Spectroscopic Characterization of Cobalt Tartrate Crystals. Research Journal of Recent Sciences, 3: 63-66.
  25. Du, C-J., Zhang, Q-A., Wang, L-S., Du, C-L. (2012). Diaquabis(hydrogentartrato)cobalt(II) dihydrate, Acta Crystallographica. E68: m99–m100.
  26. Bruker AXS Ltd. (2005). APEX2. Madison. Wisconsin, USA.
  27. Sheldrick, G.M. (1996). SADABS. University of Göettingen, Germany.
  28. Sheldrick, G.M. (2008). A Short History of SHELX. Acta Crystallographica. A64: 112–122.
  29. Sheldrick, G.M. (1997). SHELXS97, Program for the Solution of Crystal Structures. University of Göttingen, Germany.
  30. Sheldrick, G.M. (1997). SHELXL97, Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
  31. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A.K., Puschmann, H. (2009). OLEX2: A Complete Structure Solution, Refinement, and Analysis Program. Journal of Applied Crystallography, 42: 339-341.
  32. Lide, D.R. (2010). Dissociation Constants of Organic Acids and Bases, in CRC Handbook of Chemistry and Physics, 90th ed. (CD-ROM Version). CRC Press/Taylor and Francis, Boca Raton, Florida, USA.

  1. Electrodeposition of Co-rich Cu-Co Alloys from Sodium Tartrate Baths Using Direct (DC) and Single Pulsed Current (SPC)
    Thaís Machado de Souza, Dalva Cristina Baptista do Lago, Lilian Ferreira de Senna, Materials Research, vol. 22, no. 3, 2019. doi: 10.1590/1980-5373-mr-2018-0272