skip to main content

Green Synthesis, Characterization, and Catalytic Activity of Amine-multiwalled Carbon Nanotube for Biodiesel Production

1Faculty of Advanced Science and Technology, Kumamoto University, 2-40-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan

2Chemical Engineering Department, Gokongwei College of Engineering, De La Salle University-Manila, 2401 Taft Avenue, Malate, Manila 1004, Philippines

3College of Engineering, Architecture and Technology, De La Salle University Dasmarinas, Cavite, DBB-B, 4115 West Ave, Dasmariñas, Cavite 4114, Philippines

4 College of Cross-Cultural and Multidisciplinary Studies, Kumamoto University, Japan 2-40-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan

View all affiliations
Received: 13 Jan 2022; Revised: 26 Feb 2022; Accepted: 28 Feb 2022; Available online: 9 Mar 2022; Published: 30 Jun 2022.
Editor(s): Bunjerd Jongsomjit
Open Access Copyright (c) 2022 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image
Abstract

An amine-functionalized multiwalled carbon nanotube (MWCNT) was prepared for use as a basic heterogeneous catalyst for the conversion of Cocos nucifera (coconut) oil and Hibiscus cannabinus (kenaf) oil to biodiesel. The 3-aminopropyltrimethoxysilane (3-APTMS) was chosen to form an amine-reactive surface to bind with hydroxyl (−OH) and carboxyl (−COOH) groups of oxidized MWCNT. Silanization took place using a green surface modification method in which supercritical carbon dioxide fluid was utilized under the following conditions: 55 °C, 9 MPa, and 1 h. The synthesized catalyst was characterized using Thermogravimetric analysis (TGA), Fourier transform infrared (FTIR), Field emission scanning electron microscopy–energy dispersive x-ray (FESEM-EDX), Time-of-flight secondary ion mass spectrometry (TOF-SIMS), X-ray powder diffraction (XRD), and Brunauer–Emmett-Teller (BET). Transesterification of coconut oil using 10 wt% NH2-MWCNT catalyst (3 wt% APTMS), 12:1 molar ratio of methanol and oil at 63 °C for 1 h resulted in a >95% conversion. On the other hand, the same catalyst was used in the transesterification of kenaf oil, and formation of ammonium carboxylated salt was observed. The effects of temperature, pressure, and silane concentration on surface modification of MWCNT were evaluated in terms of the catalyst’s basic site density and fatty acid methyl ester conversion. The results indicate that reaction temperature and silane concentration had the most significant effects. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Fulltext View|Download
Keywords: Amine; Aminosilane; Biodiesel; Supercritical carbon dioxide; Transesterification
Funding: Department of Science and Technology – Philippine Council for Industry, Energy and Emerging Technology (DOST – PCIEERD); Department of Science and Technology- Industrial Technology Development Institute-Advance Device Material Testing Laboratory (DOST – ITDI – ADMATEL); e-Asia Joint Research Program (JRP) of Japan-Philippines-Thailand; JST SICORP under contract Grant Number JPMJSC18E2

Article Metrics:

  1. Mostafa, M., Abdel Aleem, S.H.E., Abdelaziz, A.Y. (2019). Energy Management Solutions for Microgrids. In Rajeev Kumar Chauhan, Kalpana Chauhan (Editors) Distributed Energy Resources in Microgrids: Integration, Challenges and Optimization. USA: Academic Press
  2. Di Serio, M., Tesser, R., Pengmei, L., Santacesaria, E. (2008). Heterogeneous catalysts for biodiesel production. Energy Fuels, 22, 207–217. DOI: 10.1021/ef700250g
  3. de Lima, A.L., Ronconi, C., Mota, C. (2016). Heterogeneous basic catalysts for biodiesel production. Catalysis Science and Technology, 6, 1–29. DOI: 10.1039/C5CY01989C
  4. Quitain, A., Sumigawa, Y., Mission, E., Sasaki, M., Assabumrungat, S., Kida, T. (2018). Graphene oxide and microwave synergism for efficient esterification of fatty acids. Energy Fuels, 32, 3599–3607. DOI: 10.1021/acs.energyfuels.8b00119
  5. Mumtaz, M.W., Adnan, A., Mukhtar, H., Rashid, U., Danish, M. (2017). Biodiesel Production through Chemical and Biochemical Transesterification: Trends, Technicalities, and Future Perspectives. In Mohammad Rasul, Abul kalam Azad, Subhash Sharma (Editors) Clean energy for Sustainable Development: Comparisons and Contrasts of New approaches. USA: Academic Press
  6. Xie, W., Yang, X., Fan, M. (2015). Novel solid base catalyst for biodiesel production: Mesoporous SBA-15 silica immobilized with 1,3-dicyclohexyl-2-octylguanidine. Renewable Energy, 80, 230–237. DOI: 10.1016/j.renene.2015.02.014
  7. Ambat, I., Srivastava, V., Sillanpää, M. (2018). Recent advancement in biodiesel production methodologies using various feedstock: A review. Renewable & Sustainable Energy Reviews, 90, 356–369. DOI: 10.1016/j.rser.2018.03.069
  8. Madhuvilakku, R., Piraman, S. (2013). Biodiesel synthesis by TiO2-ZnO mixed oxide nanocatalyst catalyzed palm oil transesterification process. Bioresource Technology, 150, 55–59. DOI: 10.1016/j.biortech.2013.09.087
  9. Navas, M., Lick, I., Bolla, P., Casella, M., Ruggera J. (2018). Transesterification of soybean and castor oil with methanol and butanol using heterogeneous basic catalysts to obtain biodiesel. Chemical Engineering Science, 187, 444–454. DOI: 10.1016/j.ces.2018.04.068
  10. Čerče, T., Peter, S., Weidner, E. (2005). Biodiesel-transesterification of biological oils with liquid catalysts: Thermodynamic properties of oil−methanol−amine mixtures. Industrial & Engineering Chemistry Research, 44, 9535–9541. DOI: 10.1021/ie050252e
  11. Yao, J., Ji, L., Sun, P., Zhang, L., Xu, N. (2010). Low boiling point organic amine-catalyzed transesterification of cottonseed oil to biodiesel with trace amount of KOH as co-catalyst. Fuel, 89, 3871–3875. DOI: 10.1016/j.fuel.2010.07.003
  12. Plueddemann, E.P. (1982). Silane Coupling Agents. 2nd ed. USA
  13. Kishor, R., Ghoshal, A.K. (2017). Aqueous aminosilane solution grafted three dimensional mesoporous silica for CO2/N2 separation. Microporous and Mesoporous Materials, 246, 137–146. DOI: 10.1016/j.micromeso.2017.03.023
  14. Lai, A., Loehde-Woolard, H., McNeary, W., Burger, J., Pfeffer, R., Weimer, A. (2021). Amine-functionalized fumed silica for CO2 capture through particle molecular layer deposition. Chemical Engineering Science, 245, 116954. DOI: 10.1016/j.ces.2021.116954
  15. Jeong, U., Kim, Y. (2015). Colorimetric detection of heavy metal ions using aminosilane. Journal of Industrial and Engineering Chemistry, 31, 393–396. DOI: 10.1016/j.jiec.2015.07.014
  16. Rodríguez-Cano, A., Cintas, P., Fernández-Calderón, M., Pacha-Olivenza, M., Crespo, L., Saldaña, L., Vilaboa, N., González-Martín, M., Babiano, R. (2013). Controlled silanization – amination reactions on the Ti 6Al 4V surface for biomedical applications. Colloids and Surfaces B: Biointerfaces, 106, 248–257. DOI: 10.1016/j.colsurfb.2013.01.034
  17. Alex, D., Mathew, A., Sukumaran, R. (2014). Esterases immobilized on aminosilane modified magnetic nanoparticles as a catalyst for biotransformation reactions. Bioresource Technology, 167, 547–550. DOI: 10.1016/j.biortech.2014.05.110
  18. Pourhashem, S., Rashidi, A., Vaezi, M., Bagherzadeh, M. (2017). Excellent corrosion protection performance of epoxy composite coatings filled with amino – silane functionalized graphene oxide. Surface and Coatings Technology, 317, 1–9. DOI: 10.1016/j.surfcoat.2017.03.050
  19. Zhang, X., Heinonen, S., Levänen, E. (2014). Applications of supercritical carbon dioxide in materials processing and synthesis. RSC Advances, 105, 61137–61152. DOI: 10.1039/C4RA10662H
  20. Xie, W., Zhao, L. (2013). Aminopropylsilica as an environmentally friendly and reusable catalyst for biodiesel production from soybean oil. Fuel, 103, 1106–1110. DOI: 10.1016/j.fuel.2012.08.031
  21. de Lima, A.L., Mbengue, A., San Gil, R., Ronconi, C., Mota, C. (2014). Synthesis of amine-functionalized mesoporous silica basic catalysts for biodiesel production. Catalysis Today, 226, 210–216. DOI: 10.1016/j.cattod.2014.01.017
  22. Elimbinzi, E., Nyandoro, S.S., Mubofu, E.B., Osatiashtiani, A., Manayil, J., Isaacs, M., Lee, A., Wilson, K. (2018). Synthesis of amine functionalized mesoporous silicas templated by castor oil for transesterification. MRS Advances, 3, 2261–2269. DOI: 10.1557/adv.2018.347
  23. Škerget, M., Knez, Ž., Knez-Hrnčič, M. (2011). Solubility of solids in sub- and supercritical fluids: A review. Journal of Chemical & Engineering Data, 56, 694–719. DOI: 10.1021/acs.jced.7b00778
  24. Zhang, L., She, Q., Wang, R., Wongchitphimon, S., Chen, Y., Fane, A. (2016). Unique roles of aminosilane in developing anti-fouling thin film composite membranes for pressure retarded osmosis. Desalination, 389, 119–128. DOI: 10.1016/j.desal.2015.12.024
  25. Macawile, M.C., Quitain, A., Kida, T., Tan, R., Auresenia, J. (2020). Green synthesis of sulfonated organosilane functionalized multiwalled carbon nanotubes and its catalytic activity for one-pot conversion of high free fatty acid seed oil to biodiesel. Journal of Cleaner Production, 275, 123–146. DOI: 10.1016/j.jclepro.2020.123146
  26. Yu, H., Jin, Y., Li, Z., Peng, F., Wang, H. (2008). Synthesis and characterization of sulfonated single-walled carbon nanotubes and their performance as solid acid catalyst. Journal of Solid State Chemistry, 181, 432–438. DOI: 10.1016/j.jssc.2007.12.017
  27. Peng, Y., Liu, H. (2006). Effects of oxidation by hydrogen peroxide on the structures of multiwalled carbon nanotubes. Industrial & Engineering Chemistry Research, 45, 6483–6488. https://doi.org/10.1021/ie0604627
  28. AOAC, Association of Official Analytical Chemists. (2000). AOAC Official Method 969.33 fatty acids in oils and fats. 17th ed. USA
  29. Khani, H., Moradi, O. (2013). Influence of surface oxidation on the morphological and crystallographic structure of multi-walled carbon nanotubes via different oxidants. Journal of Nanostructure in Chemistry, 3, 1–8. DOI: 10.1186/2193-8865-3-73
  30. Rahmam, S., Mohamed, N., Suriati, S. (2014). The effect of surface area, pore volume, and pore size distribution on the modified multiwalled carbon nanotubes. Applied Mechanics and Materials, 625, 148–151. DOI: 10.4028/www.scientific.net/AMM.625.148
  31. Hu, Y., Ruckenstein, E. (2004). Pore size distribution of single-walled carbon nanotubes. Industrial & Engineering Chemistry Research, 43, 708–711. DOI: 10.1021/ie030757+
  32. Salam, M.A., Burk, R. (2017). Synthesis and characterization of multi-walled carbon nanotubes modified with octadexylamine and polyethylene glycol. Arabian Journal of Chemistry, 10, S921–S927. DOI: 10.1016/j.arabjc.2012.12.028
  33. Mgheer, T.A., Abdulrazzak, F.H. (2016). Oxidation of multi-walled carbon nanotubes in acidic and basic piranha mixture. Frontiers in Nanoscience and Nanotechnology, 2, 155–158. DOI: 10.15761/FNN.1000127
  34. Jiang, J., Cao, J., Wang, W., Xue, J. (2018). How silanization influences aggregation and moisture sorption behaviours of silanized silica: analysis of porosity and multilayer moisture adsorption. Royal Society Open Science, 5, 180206. DOI: 10.1098/rsos.180206
  35. Hajek, J., Kumar, N., Karhu, H., Cerveny, L., Vayrynen, J., Salmi, T., Murzin, D. (2000). Preparation and properties of bimetallic Ru-Sn sol gel catalysts: influence of catalyst reduction. Studies in Surface Science and Catalysis, 143, 757–765. DOI: 10.1016/S0167-2991(00)80719-3
  36. Lang, S.B., Locascio, T.M., Tunge, J.A. (2014). Activation of alcohols with carbon dioxide: intermolecular allylation of weakly acidic pronucleophiles. Organic Letters, 16, 4308–4311. DOI: 10.1021/ol502023d
  37. Xie, W., Fan, M. (2014). Biodiesel production by transesterification using tetraalkylammonium hydroxides immobilized onto SBA-15 as a solid catalyst. Chemical Engineering Journal, 239, 60–67. DOI: 10.1016/j.cej.2013.11.009
  38. Smith, M. (2020). Biochemistry: An Organic Chemistry. USA
  39. Jin, J., Noordermeer, J., Dierkes, W., Blume, A. (2020). The effect of silanization temperature and time on the marching modulus of silica-filled tire tread compounds. Polymers, 12(1), 209. DOI: 10.3390/polym12010209
  40. Scully, N., O’Sullivan, G., Healy, L., Glennon, J., Dietrich, B., Albert, K. (2007). Preparation of a mercaptopropyl bonded silica intermediate in supercritical carbon dioxide: Synthesis, characterisation and chromatography of a quinine based chiral stationary phase. Journal of Chromatography A, 1156, 68–74. DOI: 10.1016/j.chroma.2006.12.037
  41. West, K., Wheeler, C., McCarney, J., Griffith, K., Bush, D., Liotta, C., Eckert, C. (2001). In situ formation of alkylcarbonic acids with CO2. Journal of Physical Chemistry A, 105, 3947–3948. DOI: 10.1021/jp003846y
  42. Rubi, R.V., Quitain, A., Agutaya, J.K.C., Doma Jr. B., Soriano, A., Auresenia, J., Kida, T. (2019). Synergy of in-situ formation of carbonic acid and supercritical CO2-expanded liquids: Application to extraction of andrographolide from Andrographis paniculata. Journal of Supercritical Fluids, 152, 104546. DOI: 10.1016/j.supflu.2019.104546
  43. Omar, W., Amin, N. (2011). Biodiesel production from waste cooking oil over alkaline modified zirconia catalyst. Fuel Processing Technology, 92, 2397–2405. DOI: 10.1016/j.fuproc.2011.08.009

Last update:

No citation recorded.

Last update:

No citation recorded.