skip to main content

Photocatalytic Degradation of Polyethylene Microplastics and Disinfection of E. coli in Water over Fe- and Ag-Modified TiO2 Nanotubes

Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16424, Indonesia

Received: 13 Jan 2022; Revised: 23 Feb 2022; Accepted: 23 Feb 2022; Available online: 2 Mar 2022; Published: 30 Jun 2022.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2022 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image
Abstract

In this study, Fe- and Ag-modified TiO2 nanotubes were synthesized via an anodization method as photocatalysts for degradation of polyethylene microplastics and disinfection of Escherichia coli (E. coli). The anodization voltage, as well as the Fe3+ or Ag+ concentrations on TiO2 nanotubes were evaluated and correlated to their corresponding photocatalytic properties. TiO2 nanotubes were firstly synthesized by anodization of Ti plates in a glycerol-based electrolyte, followed by incorporation of either Fe or Ag via a Successive Ionic Layer Adsorption and Reaction (SILAR) method with Fe(NO3)3 and AgNO3 as Fe and Ag precursors, respectively. UV-Vis DRS shows that the addition of Fe or Ag on TiO2 nanotubes causes a redshift in the absorption spectra. The X-ray diffractograms indicate that, in the case of Fe-modified samples, Fe3+ was successfully incorporated into TiO2 lattice, while Ag scatters around the surface of the tubes as Ag and Ag2O nanoparticles. A microplastic degradation test was carried out for 90 mins inside a photoreactor with UVC illumination. TiO2 nanotubes that are anodized with a voltage of 30 V exhibit the best degradation results with 17.33% microplastic weight loss in 90 mins. Among the modified TiO2 nanotubes, 0.03 M Ag-TiO2 was the only one that surpassed the unmodified TiO2 in terms of microplastic degradation in the water, offering up to 18% microplastic weight loss in 90 min. In terms of E. coli disinfection, 0.03M Ag-TiO2 exhibit better performance than its unmodified counterpart, revealing 99.999% bactericidal activities in 10 mins. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Fulltext View|Download
Keywords: Photocatalyst; TiO2 nanotubes; Microplastic; Ag-TiO2 nanotubes; Fe-TiO2 nanotubes
Funding: Ristek-Dikti Republic of Indonesia under contract PDUPT grant scheme (Contract no. NKB-2864 / UN2.RST / HKP.05.00 / 2020)

Article Metrics:

  1. Kosuth, M., Mason, S.A., Wattenberg, E.V. (2018). Anthropogenic contamination of tap water, beer, and sea salt. PloS one, 13(4), e0194970. DOI: 10.1371/journal.pone.0194970
  2. Mason, S.A., Welch, V.G., Neratko, J. (2018). Synthetic polymer contamination in bottled water. Frontiers in Chemistry, 6, 407. DOI: 10.3389/fchem.2018.00407
  3. Pinson, A., Franssen, D., Gerard, A., Parent, A.S., Bourguignon, J.P. (2017), Neuroendocrine disruption without direct endocrine mode of action: polychloro-biphenyls (PCBs) and bisphenol A (BPA) as case studies. Comptes Rendus Biologies, 340(9-10), 432-438. DOI: 10.1016/j.crvi.2017.07.006
  4. Uheida, A., Mejia, H.G., Abdel-Rehim, M., Hamd, W., Dutta, J. (2021). Visible light photocatalytic degradation of polypropylene microplastics in a continuous water flow system. Journal of Hazardous Materials, 406, 124299. DOI: 10.1016/j.jhazmat.2020.124299
  5. Karim, A.V., Hassani, A., Eghbali, P., Nidheesh, P.V. (2022). Nanostructured modified layered double hydroxides (LDHs)-based catalysts: A review on synthesis, characterization, and applications in water remediation by advanced oxidation processes. Current Opinion in Solid State and Materials Science, 26(1), 100965. DOI: 10.1016/j.cossms.2021.100965
  6. Wang, Z., Lin, T., Chen, W. (2020). Occurrence and removal of microplastics in an advanced drinking water treatment plant (ADWTP). Science of the Total Environment, 700, 134520. DOI: 10.1016/j.scitotenv.2019.134520
  7. Hassani, A., Krishnan, S., Scaria, J., Eghbali, P., Nidheesh, P.V. (2021). Z-scheme photocatalysts for visible-light-driven pollutants degradation: A review on recent advancements. Current Opinion in Solid State and Materials Science, 25(5), 100941. DOI: 10.1016/j.cossms.2021.100941
  8. Hassani, A., Faraji, M., Eghbali, P. (2020). Facile fabrication of mpg-C3N4/Ag/ZnO nanowires/Zn photocatalyst plates for photodegradation of dye pollutant. Journal of Photochemistry and Photobiology A: Chemistry, 400, 112665. DOI: 10.1016/j.jphotochem.2020.112665
  9. Motlagh, P.Y., Khataee, A., Hassani, A., and Rad, T.S. (2020). ZnFe-LDH/GO nanocomposite coated on the glass support as a highly efficient catalyst for visible light photodegradation of an emerging pollutant. Journal of Molecular Liquids, 302, 112532. DOI: 10.1016/j.molliq.2020.112532
  10. Moma, J., Baloyi, J. (2018). Modified titanium dioxide for photocatalytic applications. In Sher Bahadar Khan and Kalsoom Akhtar (Editor) Photocatalysts - Applications and Attributes. Croatia: InTech Publisher. DOI: 10.5772/intechopen.79374
  11. Ariza-Tarazona, M.C., Villareal-Chiu, J.F., Barbieri, V., Siligardi, C., Cedillo-Gonzalez, E.I. (2019). New strategy for microplastic degradation: Green photocatalysis using a protein-based porous N-TiO2 semiconductor. Ceramics International, 45(7), 9618-9624. DOI: 10.1016/j.ceramint.2018.10.208
  12. Haris, M., Didit, A. Ibadurrohman, M., Setiadi, S., and Slamet, S. (2021). Silver Doped TiO2 Photocatalyst for Disinfection of E. coli and Microplastic Pollutant Degradation in Water. Asian Journal of Chemistry, 33(9), 2038-2042. DOI: 10.14233/ajchem.2021.23255
  13. Maulana, D.A., Ibadurrohman, M., Slamet, S. (2021). Synthesis of Nano-Composite Ag/TiO2 for Polyethylene Microplastic Degradation Applications. IOP Conference Series: Materials Science and Engineering, 1011, 012054. DOI: 10.1088/1757-899X/1011/1/012054
  14. Fadli, M.H., Ibadurrohman, M., Slamet, S. (2021). Microplastic Pollutant Degradation in Water Using Modified TiO2 Photocatalyst Under UV-Irradiation. IOP Conference Series: Materials Science and Engineering, 1011, 012055. DOI: 10.1088/1757-899X/1011/1/012055
  15. Prakasam, H.E., Shankar, K., Paulose, M., Varghese, O.K., and Grimes, C.A. (2007). A new benchmark for TiO2 nanotube array growth by anodization. The Journal of Physical Chemistry C, 111(20), 7235-7241. DOI: 10.1021/jp070273h
  16. Ali, S.S., Qazi, I.A., Arshad, M., Khan, Z., Voice, T.C., and Mehmood, C.T. (2016). Photocatalytic degradation of low density polyethylene (LDPE) films using titania nanotubes. Environmental Nanotechnology, Monitoring & Management, 5, 44-53. DOI: 10.1016/j.enmm.2016.01.001
  17. Dwirekso, I.H., Ibadurrohman, M., Slamet, S. (2020). Synthesis of TiO2-SiO2-CuO Nanocomposite Material and Its Activities for Self-cleaning. Evergreen, 7(2), 285-291. DOI: 10.5109/4055234
  18. Ibadurrohman, M., Hellgardt, K. (2020). Importance of surface roughness of TiO2 photoanodes in promoting photoelectrochemical activities with and without sacrificial agent. Thin Solid Films, 705, 138009. DOI: 10.1016/j.tsf.2020.138009
  19. Zaleska, A. (2008). Doped-TiO2: a review. Recent patents on engineering, 2(3), 157-164. DOI: 10.2174/187221208786306289
  20. Zhang, Y., Shen, Y., Gu, F., Wu, M., Xie, Y., and Zhang, J. (2009). Influence of Fe ions in characteristics and optical properties of mesoporous titanium oxide thin films. Applied Surface Science, 256(1), 85-89. DOI: 10.1016/j.apsusc.2009.07.074
  21. Nasralla, N.H.S., Yeganeh, M., Astuti, Y., Piticharoenphun, S., Siller, L. (2018). Systematic study of electronic properties of Fe-doped TiO2 nanoparticles by X-ray photoemission spectroscopy. Journal of Materials Science:Materials in Electronics, 29(20), 17956-17966. DOI: 10.1007/s10854-018-9911-5
  22. Nasralla, N., Yeganeh, M., Astuti, Y., Piticharoenphun, Shahtahmasebi, N., Kompany, A., Karimipour, M., Mendis, B.G., Poolton, N.R.J., Siller, L. (2013). Structural and spectroscopic study of Fe-doped TiO2 nanoparticles prepared by sol–gel method. Scientia Iranica, 20(3), 1018-1022. DOI: 10.1016/j.scient.2013.05.017
  23. Syrek, K., Grudzien, J., Sennik-Kubiec, A., Brudzisz, A., Sulka, G.D. (2019). Anodic Titanium Oxide Layers Modified with Gold, Silver, and Copper Nanoparticles. Journal of Nanomaterials, 2019, 9208734. DOI: 10.1155/2019/9208734
  24. Yue, X., Manach, A., Dong, J., Gao, W. (2019). Preparation of Ag-decorated TiO2 nanotube electrode and its catalytic property. International Journal of Modern Physics B, 33, 1940023. DOI: 10.1142/S021797921940023X
  25. Momeni, M.M., Ghayeb, Y., Mozafari, A.A. (2016). Optical and photo catalytic characteristics of Ag2S/TiO2 nanocomposite films prepared by electrochemical anodizing and SILAR approach. Journal of Materials Science: Materials in Electronics, 27(11), 11201-11210. DOI: 10.1007/s10854-016-5240-8
  26. Wang, X., Zhao, J., Li, Z., Yin, Z., Wu, Z., and Wang, X. (2021), Facile SILAR preparation of Fe(OH)3/Ag/TiO2 nanotube arrays ternary hybrid for supercapacitor negative electrode. International Journal of Hydrogen Energy, 46(12), 8702-8721. DOI: 10.1016/j.ijhydene.2020.12.048
  27. Venturini, J., Bonatto, F., Guaglianoni, W.C., Lemes, T., Arcaro, S., Alves, A.K., and Bergmann, C.P. (2019). Cobalt-doped titanium oxide nanotubes grown via one-step anodization for water splitting applications. Applied Surface Science, 464, 351-359. DOI: 10.1016/j.apsusc.2018.09.093
  28. Junkar, I., Kulkarni, M., Bencina, M, Kovac, J., Mrak-Polsak, K., Lakota, K., Sodin-Semrl, S., Mozetic, M., Iglic, A. (2020). Titanium dioxide nanotube arrays for cardiovascular stent applications. ACS omega, 5(13), 7280-7289. DOI: 10.1021/acsomega.9b04118
  29. Durdu, S., Cihan, G., Yalcin, E., Altinkok, A. (2021). Characterization and mechanical properties of TiO2 nanotubes formed on titanium by anodic oxidation. Ceramics International, 47(8), 10972-10979. DOI: 10.1016/j.ceramint.2020.12.218
  30. Peng, Z., Ni, J. (2019). Surface properties and bioactivity of TiO2 nanotube array prepared by two-step anodic oxidation for biomedical applications. Royal Society Open Science, 6(4), 181948. DOI: 10.1098/rsos.181948
  31. Sahrin, N.T., Nawaz, R., Chong, F.K., Lee, S.L., Wirzal, M.D.H. (2021). Current perspectives of anodized TiO2 nanotubes towards photodegradation of formaldehyde: A short review. Environmental Technology & Innovation, 22, 101418. DOI: 10.1016/j.eti.2021.101418
  32. Lockman, Z., Sreekantan, S., Ismail, S., Schmidt-Mende, L., Macmanus-Driscoll, J.L. (2010). Influence of anodisation voltage on the dimension of titania nanotubes. Journal of Alloys and Compounds, 503(2), 359-364. DOI: 10.1016/j.jallcom.2009.12.093
  33. Lai, C.W., Sreekantan, S. (2011). Effect of applied potential on the formation of self-organized TiO2 nanotube arrays and its photoelectrochemical response. Molecules, 14, 16-18. DOI: 10.1155/2011/142463
  34. Prakash, J., Sun, S., Swart, H.C., Gupta, R.K. (2018). Noble metals-TiO2 nanocomposites: from fundamental mechanisms to photocatalysis, surface enhanced Raman scattering and antibacterial applications. Applied Materials Today, 11, 82-135. DOI: 10.1016/j.apmt.2018.02.002
  35. Lakkim, V., Reddy, M.C., Pallavali, R.R., Reddy, K.R., Reddy, C.V., Inamuddin, I., Bilgrami, A.L., Lomada, D. (2020). Green synthesis of silver nanoparticles and evaluation of their antibacterial activity against multidrug-resistant bacteria and wound healing efficacy using a murine model. Antibiotics, 9(12), 902. DOI: 10.3390/antibiotics9120902
  36. Singh, Y., Kaushal, S., Sodhi, R.S. (2020). Biogenic synthesis of silver nanoparticles using cyanobacterium Leptolyngbya sp. WUC 59 cell-free extract and their effects on bacterial growth and seed germination. Nanoscale Advances, 2(9), 3972-3982. DOI: 10.1039/D0NA00357C
  37. Sabir, A., Sherazi, T.A., Xu, Q. (2021). Porous polymer supported Ag-TiO2 as green photocatalyst for degradation of methyl orange. Surfaces and Interfaces, 26, 101318. DOI: 10.1016/j.surfin.2021.101318
  38. Ghanbari, F., Hassani, A., Waclawek, S., Wang, Z., Matyszczak, G., Lin, K.A., and Dolatabadi, M. (2021). Insights into paracetamol degradation in aqueous solutions by ultrasound-assisted heterogeneous electro-Fenton process: Key operating parameters, mineralization and toxicity assessment. Separation and Purification Technology, 266, 118533. DOI: 10.1016/j.seppur.2021.118533
  39. Eghbali, P., Hassani, A., Sundu, B., Metin, O. (2019). Strontium titanate nanocubes assembled on mesoporous graphitic carbon nitride (SrTiO3/mpg-C3N4): Preparation, characterization and catalytic performance. Journal of Molecular Liquids, 290, 111208. DOI: 10.1016/j.molliq.2019.111208
  40. Liang, W., Luo, Y., Song, S., Dong, X., Yu, X. (2013). High photocatalytic degradation activity of polyethylene containing polyacrylamide grafted TiO2. Polymer Degradation and Stability, 98(9), 1754-1761. DOI: 10.1016/j.polymdegradstab.2013.05.027
  41. Zhao, X.U., Li, Z., Chen, Y., Shi, L., Zhu, Y. (2007). Solid-phase photocatalytic degradation of polyethylene plastic under UV and solar light irradiation. Journal of Molecular Catalysis A: Chemical, 268(1), 101-106. DOI: 10.1016/j.molcata.2006.12.012
  42. Zan, L., Tian, L., Liu, Z., Peng, Z. (2004). A new polystyrene–TiO2 nanocomposite film and its photocatalytic degradation. Applied Catalysis A: General, 264(2), 237-242. DOI: 10.1016/j.apcata.2003.12.046
  43. Lei, J., Li, X., Li, W., Sun, F., Lu, D., Lin, Y. (2012). Photocatalytic degradation of methyl orange on arrayed porous iron-doped anatase TiO2. Journal of Solid State Electrochemistry, 16(2), 625-632. DOI: 10.1007/s10008-011-1388-6
  44. Patel, N., Dashora, A., Jaiswal, R., Fernandes, R., Yadav, M., Kothari, D.C., Ahuja, L., Miotello, A. (2015). Experimental and theoretical investigations on the activity and stability of substitutional and interstitial boron in TiO2 photocatalyst. The Journal of Physical Chemistry C, 119(32), 18581-18590. DOI: 10.1021/acs.jpcc.5b05290
  45. Zhu, J., Zheng, W., He, B., Zhang, J., Anpo, M. (2004). Characterization of Fe–TiO2 photocatalysts synthesized by hydrothermal method and their photocatalytic reactivity for photodegradation of XRG dye diluted in water. Journal of Molecular Catalysis A: Chemical. 216(1), 35-43. DOI: 10.1016/j.molcata.2004.01.008
  46. Fan, X., Fan, J., Hu, X., Liu, E., Kang, L., Tang, C., Ma, Y., Wu, H., Li Y. (2014). Preparation and characterization of Ag deposited and Fe doped TiO2 nanotube arrays for photocatalytic hydrogen production by water splitting. Ceramics International, 40(10), 15907-15917. DOI: 10.1016/j.ceramint.2014.07.119
  47. Sood, S., Umar, A., Mehta, S.K., Kansal, S.K. (2015). Highly effective Fe-doped TiO2 nanoparticles photocatalysts for visible-light driven photocatalytic degradation of toxic organic compounds. Journal of Colloid and Interface Science, 450, 213-223. DOI: 10.1016/j.jcis.2015.03.018
  48. Zhu, J., Chen, F., Zhang, J., Chen, H., Anpo, M. (2006). Fe3+-TiO2 photocatalysts prepared by combining sol–gel method with hydrothermal treatment and their characterization. Journal of Photochemistry and Photobiology A: Chemistry, 180(1-2), 196-204. DOI: 10.1016/j.jphotochem.2005.10.017
  49. Momeni, M.M., Ghayeb, Y. (2015). Fabrication, characterization and photoelectrochemical behavior of Fe–TiO2 nanotubes composite photoanodes for solar water splitting. Journal of Electroanalytical Chemistry, 751, 43-48. DOI: 10.1016/j.jelechem.2015.05.035
  50. Guaglianoni, W.C., Ruwer, T.L., Caldeira, L.E.N., Wermuth, T.B., Venturini, J., Bergmann, C.P. (2021). Single-step synthesis of Fe-TiO2 nanotube arrays with improved light harvesting properties for application as photoactive electrodes. Materials Science and Engineering: B, 263, 114896. DOI: 10.1016/j.mseb.2020.114896
  51. Khan, M.R., Chuan, T.W., Yousuf, A., Chowdhury, M.N.K., Cheng, C.K. (2015). Schottky barrier and surface plasmonic resonance phenomena towards the photocatalytic reaction: study of their mechanisms to enhance photocatalytic activity. Catalysis Science & Technology, 5(5), 2522-2531. DOI: 10.1039/C4CY01545B
  52. Xue, X., Gong, X., Chen, X., Chen, B.Y. (2021). A facile synthesis of Ag/Ag2O@TiO2 for toluene degradation under UV–visible light: Effect of Ag formation by partial reduction of Ag2O on photocatalyst stability. Journal of Physics and Chemistry of Solids, 150, 109799. DOI: 10.1016/j.jpcs.2020.109799
  53. Akel, S., Dillert, R., Balayeva, N.O., Boughaled, R., Koch, J., El-Azzouzi, M., and Bahnemann, D.W. (2018). Ag/Ag2O as a co-catalyst in TiO2 photocatalysis: effect of the co-catalyst/photocatalyst mass ratio. Catalysts, 8(12), 647. DOI: 10.3390/catal8120647
  54. Liu, B., Mu, L., Han, B., Zhang, J., Shi, H. (2017). Fabrication of TiO2/Ag2O heterostructure with enhanced photocatalytic and antibacterial activities under visible light irradiation. Applied Surface Science, 396, 1596-1603. DOI: 10.1016/j.apsusc.2016.11.220
  55. Ding, W., Zhao, L., Yan, H., Wang, X., Liu, X., Zhang, X., Huang, X., Hang, R., Wang, Y., Yao, X., Tang, B. (2019). Bovine serum albumin assisted synthesis of Ag/Ag2O/ZnO photocatalyst with enhanced photocatalytic activity under visible light. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 568, 131-140. DOI: 10.1016/j.colsurfa.2019.02.015
  56. Dai, T., Vrahas, M.S., Murray, C.K., Hamblin, M.R. (2012). Ultraviolet C irradiation: an alternative antimicrobial approach to localized infections?. Expert Review of Anti-Infective Therapy, 10(2), 185-195. DOI: 10.1586/eri.11.166
  57. Cabiscol C.E., Sumalla, J.T., Salvador, J.R. (2000). Oxidative stress in bacteria and protein damage by reactive oxygen species. International Microbiology, 3(1), 3-8. DOI: 10.2436/IM.V3I1.9235
  58. Reddy, P.A.K., Reddy, P.V.L., Kwon, E., Kim, K.H., Akter, T., Kalagara, S. (2016). Recent advances in photocatalytic treatment of pollutants in aqueous media. Environment International, 91, 94-103. DOI: 10.1016/j.envint.2016.02.012
  59. Sunada, K., Watanabe, T., Hashimoto, K. (2003). Bactericidal activity of copper-deposited TiO2 thin film under weak UV light illumination. Environmental Science & Technology, 37(20), 4785-4789. DOI: 10.1021/es034106g

Last update:

No citation recorded.

Last update:

No citation recorded.