skip to main content

Synthesis and Characterization of Mesoporous Carbon Supported Ni-Ga Catalyst for Low-Pressure CO2 Hydrogenation

Solid Inorganic Framework Laboratory, Department of Chemistry, Faculty of Mathematics and Natural Sciences (FMIPA), Universitas Indonesia, Depok-16424, Indonesia

Received: 7 Jan 2022; Revised: 22 Feb 2022; Accepted: 23 Feb 2022; Available online: 2 Mar 2022; Published: 30 Jun 2022.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2022 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image
Abstract

In this study, the atmospheric-pressure hydrogenation of CO2 was carried over bimetallic Ni-Ga catalyst supported on mesoporous carbon (MC). MC was successfully prepared using the soft-template method as proven by Fourier Transform Infra Red (FTIR), X-ray Diffraction (XRD), Scanning Electron Microscopy - Energy Dispersive X-Ray Spectroscopy (SEM-EDS), Brunauer–Emmett–Teller  Surface Area Analyzer (BET SAA), and Transmission Electron Microscopy (TEM) characterizations. The Ni-Ga/MC catalyst was synthesized using the impregnation method, and based on the XRD characterization, the formation of bimetallic Ni-Ga on the MC support is confirmed. The EDS mapping image shows the uniform distribution of the bimetallic Ni-Ga on the MC surface, especially for the Ni5Ga3/MC and NiGa3/MC catalysts. Moreover, the TEM images show an excellent pore size distribution. The formation of Ni-Ga alloy was identified as an active site in the CO2 hydrogenation. Ni5Ga3/MC catalyst exhibited a 10.80% conversion of CO2 with 588 μmol/g formaldehyde at 1 atm, 200 °C, and H2/CO2 ratio of 3/1. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Fulltext View|Download
Keywords: CO2 Hydrogenation; Bimetallic catalyst; Ni-Ga; Mesoporous Carbon
Funding: FMIPA Universitas Indonesia Research Grant under contract contract number NKB-017/UN2.F3/HKP.05.00/2021

Article Metrics:

  1. Rafiee, A., Khalilpour, K.R., Milani, D., Panahi, M. (2018). Trends in CO2 conversion and utilization: A review from process systems perspective. Journal of Environmental Chemical Engineering, 6(5), 5771–5794. DOI: 10.1016/j.jece.2018.08.065
  2. Alper, E., Orhan, O.Y. (2017). CO2 utilization: Developments in conversion processes. Petroleum, 3(1), 109–126. DOI: 10.1016/j.petlm.2016.11.003
  3. Krajčí, M., Hafner, J. (2016). Intermetallic compounds as selective heterogeneous catalysts: insights from DFT. ChemCatChem, 8(1), 34–48. DOI: 10.1002/cctc.20150073
  4. Studt, F., Sharafutdinov, I., Abild-Pedersen, F., Elkjær, C.F., Hummelshøj, J.S., Dahl, S., Chorkendorff, I. Nørskov, J.K. (2014). Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol. Nature Chemistry, 6(4) 320–324. DOI: 10.1038/nchem.1873
  5. Nguyen, H.K.D., Dang, T.H., Nguyen, N.L.T., Nguyen, H.T., Dinh, N.T. (2018). Novel Ni-Ga alloy based catalyst for converting CO2 to methanol. The Canadian Society for Chemical Engineering, 96(4), 832–837. DOI: 10.1002/cjce.23006
  6. Ahmad, K., Upadhyayula, S. (2019). Conversion of the greenhouse gas CO2 to methanol over supported intermetallic Ga–Ni catalysts at atmospheric pressure: thermodynamic modeling and experimental study. Sustainable Energy & Fuels, 3(9), 2509–2520. DOI: 10.1039/c9se00165d
  7. Ahmad, K., Upadhyayula, S. (2020). Kinetics of CO2 hydrogenation to methanol over silica supported intermetallic Ga3Ni5 catalyst in a continuous differential fixed bed reactor. International Journal of Hydrogen Energy, 45(1), 1140–1150. DOI: 10.1016/j.ijhydene.2019.10.156
  8. Jiang, X., Nie, X., Guo, X., Song, C., Chen, J. G. (2020). Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis. Chemical Reviews, 120(15), 7984–8034. DOI: 10.1021/acs.chemrev.9b00723
  9. Liang, C., Li, Z., Dai, S. (2008). Mesoporous carbon materials: synthesis and modification. Angewandte Chemie International Edition, 47(20), 3696–3717. DOI: 10.1002/anie.200702046
  10. Amelia, I., Krisnandi, Y.K., Abdullah, I. (2020). Synthesis and characterization of soft and hard templated mesoporous carbon using phloroglucinol as carbon precursor. IOP Conference Series: Materials Science and Engineering, 902(1), 012023. DOI: 10.1088/1757-899X/902/1/012023
  11. Khairani, N.S., Abdullah, I., Krisnandi, Y.K. (2020). Synthesis and characterization of NiZn/mesoporous carbon as heterogeneous catalyst for carboxylation reaction of acetylene with CO2. AIP Conference Proceedings, 2242(1), 040039. DOI: 10.1063/5.0007890
  12. Kawigraha, A.D.H., Krisnandi, Y.K., Abdullah, I. (2020). Synthesis of impregnated nickel-mesoporous carbon and its application for reaction of acetylene with carbon dioxide. IOP Conference Series: Materials Science and Engineering, 763(1), 012040. DOI: 10.1088/1757-899X/763/1/012040
  13. Abdullah, I., Andriyanti, R., Nurani, D.A., Krisnandi, Y.K. (2021). Nickel-phenanthroline Complex Supported on Mesoporous Carbon as a Catalyst for Carboxylation under CO2 Atmosphere. Bulletin of Chemical Reaction Engineering & Catalysis, 16(1), 111–119. DOI: 10.9767/bcrec.16.1.9733.111-119
  14. Gorka, J., Zawislak, A., Choma, J., Jaroniec, M. (2008). KOH activation of mesoporous carbons obtained by soft-templating. Carbon, 46(8), 1159–1161. DOI: 10.1016/j.carbon.2008.03.024
  15. Chiou, J.Y., Kung, H.Y., Wang, C.B. (2017). Highly stable and active Ni-doped ordered mesoporous carbon catalyst on the steam reforming of ethanol application. Journal of Saudi Chemical Society, 21(2), 205–209. DOI: 10.1016/j.jscs.2015.10.006
  16. Ortega-Franqueza, M., Ivanova, S., Domínguez, M.I., Centeno, M.Á. (2021). Mesoporous Carbon Production by Nanocasting Technique Using Boehmite as a Template. Catalysts, 11(9), 1132. DOI: 10.3390/catal11091132
  17. Kumar, S., Sarau, G., Tessarek, C., Bashouti, M.Y., Hähnel, A., Christiansen, S., Singh, R. (2014). Study of iron-catalysed growth of β-Ga2O3 nanowires and their detailed characterization using TEM, Raman and cathodoluminescence techniques. Journal of Physics D: Applied Physics, 47(43), 435101. DOI: 10.1088/0022-3727/47/43/435101
  18. Kumar, V.B., Mastai, Y., Porat, Z.E., Gedanken, A. (2015). Chiral imprinting in molten gallium. New Journal of Chemistry, 39(4), 2690–2696. DOI: 10.1039/c4nj02081b
  19. Li, J., Li, P., Li, J., Tian, Z., Yu, F. (2019). Highly-dispersed Ni-NiO nanoparticles anchored on an SiO2 support for an enhanced CO methanation performance. Catalysts, 9(6), 506. DOI: 10.3390/catal9060506
  20. Zhou, J., Huang, L., Yan, W., Li, J., Liu, C., Lu, X. (2018). Theoretical Study of the Mechanism for CO2 Hydrogenation to Methanol Catalyzed by trans-RuH2 (CO)(dpa). Catalysts, 8(6), 244. DOI: 10.3390/catal8060244

Last update:

No citation recorded.

Last update:

No citation recorded.