skip to main content

Effect of Physicochemical Properties of Co and Mo Modified Natural Sourced Hierarchical ZSM-5 Zeolite Catalysts on Vanillin and Phenol Production from Diphenyl Ether

1Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Indonesia, Depok, Indonesia

2Solid Inorganic Framework Laboratory, Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Indonesia, Depok, Indonesia

Received: 7 Jan 2022; Revised: 19 Feb 2022; Accepted: 20 Feb 2022; Available online: 21 Feb 2022; Published: 30 Mar 2022.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2022 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image
Abstract

The conversion of lignocellulose biomass to value-added chemicals is challenging. In this paper, the conversion process of diphenyl ether (DPE) as a model lignin compound to phenol and vanillin compounds involved a bifunctional catalyst in reaching the simultaneous one-pot reaction in mild conditions with a high yield product. The catalysts used in this conversion are hierarchical ZSM-5 zeolites and their cobalt oxide and molybdenum oxide impregnated derivate. The ZSM-5 zeolites were synthesized using alternative precursors from natural resources, i.e., Indonesian natural zeolite and kaolin. The physicochemical properties of the catalysts were determined with various characterization methods, such as: X-ray Diffraction (XRD), Fourier Transform Infra Red (FT-IR), Scanning Electron Microscope - Energy Dispersive X-ray (SEM-EDX), X-ray Fluorescence (XRF), Surface Area Analyzer (SAA), and NH3-Temperature Programmed Desorption (NH3-TPD). The catalytic activity on conversion of DPE substrates showed that the MoOx/HZSM-5 produced the highest %yield for phenol and vanillin products; 31.96% at 250 °C and 7.63% at 200 °C, respectively. The correlation study between the physicochemical properties and the catalytic activity shows that the dominance of weak acid (>40%) and mesoporosity contribution (pore size of ~ 9 nm) play roles in giving the best catalytic activity at low temperatures. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Fulltext View|Download
Keywords: Diphenyl ether; metal oxide/ZSM-5; Vanillin and Phenol production; catalytic conversion; natural sourced ZSM-5
Funding: Kemenristek/BRIN - Hibah PTUPT (Penelitian Terapan Unggulan Perguruan Tinggi) under contract contract number: NKB-269/UN2.RST/HKP.05.00/2021

Article Metrics:

  1. Li, C., Zhao, X., Wang, A., Huber, G.W., Zhang, T. (2015). Catalytic Transformation of Lignin for the Production of Chemicals and Fuels. Chem. Rev., 115 (21), 11559–11624. DOI: 10.1021/acs.chemrev.5b00155
  2. Guadix-Montero, S., Sankar, M. (2018). Review on Catalytic Cleavage of C–C Inter-unit Linkages in Lignin Model Compounds: Towards Lignin Depolymerisation. Top. Catal., 61 (3–4), 183–198, DOI: 10.1007/s11244-018-0909-2
  3. Liu, C., Wu, S., Zhang, H., Xiao,R. (2019). Catalytic oxidation of lignin to valuable biomass-based platform chemicals: A review. Fuel Process. Technol., 191, 181–201, DOI: 10.1016/j.fuproc.2019.04.007
  4. Mauriello, F.F., Paone, E., Pietropaolo, R., Balu, A.M., Luque, R. (2018). Catalytic transfer hydrogenolysis of lignin derived aromatic ethers promoted by bimetallic Pd / Ni systems. ACS Sustainable Chem. Eng. 6 (7), 9269-9276, DOI: 10.1021/acssuschemeng.8b01593
  5. Hu, C., Zhang, H., Wu, S., Xiao, R. (2020). Molecular shape selectivity of HZSM-5 in catalytic conversion of biomass pyrolysis vapors: The effective pore size. Energy Conversion and Management, 210, 112678. DOI: 10.1016/j.enconman.2020.112678
  6. Deepa, A.K., Dhepe, P.L. (2014). Solid acid catalyzed depolymerization of lignin into value added aromatic monomers. RSC Adv., 4 (25), 12625–12629, DOI: 10.1039/c3ra47818a
  7. Kantarelis, E., Javed, R., Stefanidis, S., Psarras, A., Iliopoulou, E., Lappas, A. (2019). Engineering the Catalytic Properties of HZSM5 by Cobalt Modification and Post-synthetic Hierarchical Porosity Development. Top Catal., 62 (7–11), 773–785, DOI: 10.1007/s11244-019-01179-w
  8. Xie, W., Liang, J., Morgan, H.M., Zhang, X., Wang, K., Mao, H., Bu, Q. (2018). Ex-situ catalytic microwave pyrolysis of lignin over Co/ZSM-5 to upgrade bio-oil. Journal of Analytical and Applied Pyrolysis, 132, 163-170. DOI: 10.1016/j.jaap.2018.03.003
  9. Ma, Z., Custodis, V., Van Bokhoven, J.A. (2014). Selective deoxygenation of lignin during catalytic fast pyrolysis. Catal. Sci. Technol., 4 (3), 766–772. DOI: 10.1039/c3cy00704a
  10. Sun, L., Wang, Z., Chen, L., Yang, S., Xie, X., Gao, M., Zhao, B., Si, H., Li, J., Hua, D. (2020). Catalytic Fast Pyrolysis of Biomass into Aromatic Hydrocarbons over Mo-Modified ZSM-5 Catalysts. Catalysts, 10(9), 1051. DOI: 10.3390/catal10091051
  11. Zhang, L., Wang, Y., Zhang, L., Chi, Z., Yang, Y., Zhang, Z., Zhang, B., Lin, J., Wan, S. (2020). Hydrogenolysis of Aryl Ether Bond over Heterogeneous Cobalt-Based Catalyst. Industrial & Engineering Chemistry Research, 59 (39), 17357-17364. DOI: 10.1021/acs.iecr.0c01374
  12. Prasomsri, T., Nimmanwudipong, T., Román-Leshkov, Y. (2013). Effective hydrodeoxygenation of biomass-derived oxygenates into unsaturated hydrocarbons by MoO3 using low H2 pressures. Energy & Environmental Science, 6(6), 1732-1738. DOI: 10.1039/c3ee24360e
  13. Jing, Y., Dong, L., Guo, Y., Liu, X., Wang, Y. (2019). Chemicals from lignin: a review of the catalytic conversion involving hydrogen. ChemSusChem, 13 (17), 4181-4198. DOI: 10.1002/cssc.201903174
  14. Asghari, A., Khorrami, M.K., Kazemi, S.H. (2019). Hierarchical H-ZSM5 zeolites based on natural kaolinite as a high-performance catalyst for methanol to aromatic hydrocarbons conversion. Scientific Reports, 9(1), 17526. DOI: 10.1038/s41598-019-54089-y
  15. Krisnandi, Y.K., Saragi, I.R., Sihombing, R., Ekananda, R., Sari, I.P., Griffith, B.E., Hanna, J.V. (2019). Synthesis and Characterization of Crystalline NaY-Zeolite from Belitung Kaolin as Catalyst for n-Hexadecane Cracking. Crystals, 9 (8), 404-417. DOI: 10.3390/cryst9080404
  16. Yue, Y., Kang, Y., Bai, Y., Gu, L., Liu, H., Bao, J., Wang, T., Yuan, P., Zhu, H., Bai, Z., Bao, X. (2018). Seed-assisted, template-free synthesis of ZSM-5 zeolite from natural aluminosilicate minerals. Applied Clay Science, 158, 177–185. DOI: 10.1016/j.clay.2018.03.025
  17. Pratama, A.P., Krisnandi, Y.K., Abdullah, I. (2020). Catalytic depolymerization of lignin from wood waste biomass over natural sourced ZSM-5 catalysts Catalytic depolymerization of lignin from wood waste biomass over natural sourced ZSM-5 catalysts. In IOP Conference Series: Materials Science and Engineering pp. 1–8. 4th International Symposium on Current Progress in Functional Materials 2019. DOI: 10.1088/1757-899X/902/1/012051
  18. Rohayati, R., Krisnandi, Y.K., Sihombing, R. (2017). Synthesis of ZSM − 5 zeolite using Bayat natural zeolite as silica and alumina source Synthesis of ZSM − 5 Zeolite Using Bayat Natural Zeolite as Silica and Alumina Source. In AIP Conference Proceedings. International symposium on current progress in mathematics and sciences (ISCPMS 2016) 1862, 030094. DOI: 10.1063/1.4991198
  19. Wang, L., Zhang, Z., Yin, C., Shan, Z., Xiao, F. (2010) Microporous and Mesoporous Materials Hierarchical mesoporous zeolites with controllable mesoporosity templated from cationic polymers, Microporous and Mesoporous Materials, 131 (1–3), 58–67, DOI: 10.1016/j.micromeso.2009.12.001
  20. Wang, X., Du, B., Pu, L., Guo, Y., Li, H., Zhou, J. (2018). Effect of particle size of HZSM-5 zeolite on the catalytic depolymerization of organosolv lignin to phenols, J. Anal. Appl. Pyrolysis, 129, 13–20, DOI: 10.1016/j.jaap.2017.12.011
  21. Che, Q., Yang, M., Wang, X., Yang, Q., Rose Williams, L., Yang, H., Zou, J., Zeng, K., Zhu, Y., Chen, Y., Chen, H. (2019). Influence of physicochemical properties of metal modified ZSM-5 catalyst on benzene, toluene and xylene production from biomass catalytic pyrolysis. Bioresource Technology, 278, 248-254. DOI: 10.1016/j.biortech.2019.01.081
  22. Krisnandi, Y.K., Putra, B.A.P., Bahtiar, M., Zahara, Z., Abdullah, I., Howe, R.F. (2015). Partial Oxidation of Methane to Methanol over Heterogeneous Catalyst Co/ZSM-5. Procedia Chemistry, 14, 508–515. DOI: 10.1016/j.proche.2015.03.068
  23. Liu, B., France, L., Wu, C., Jiang, Z., Kuznetsov, V.L., Al-Megren, H.A., Al-Kinany, M., Aldrees, S.A., Xiao, T., Edwards, P.P. (2015). Methanol-to-hydrocarbons conversion over MoO3/H-ZSM-5 catalysts prepared via lower temperature calcination: a route to tailor the distribution and evolution of promoter Mo species, and their corresponding catalytic properties, Chem. Sci., 6 (9), 5152–5163, DOI: 10.1039/c5sc01825k
  24. Caldeira, V.P.S., Santos, A.G.D., Pergher, S.B.C., Costa, M.J.F., Araujo, A.S. (2016), Use of a low-cost template-free zsm-5 for atmospheric petroleum residue pyrolysis, Quim. Nova, 39 (3), 292–297, DOI: 10.5935/0100-4042.20160019
  25. Colella, C., Wise, W.S. (2014). The IZA Handbook of Natural Zeolites: A tool of knowledge on the most important family of porous minerals. Microporous Mesoporous Mater., 189, 4–10, DOI: 10.1016/j.micromeso.2013.08.028
  26. Omar, B.M., Bita, M., Louafi, I., Djouadi, A. (2018), Esterification process catalyzed by ZSM-5 zeolite synthesized via modified hydrothermal method, Methods X, 5, 277–282, DOI: 10.1016/j.mex.2018.03.004
  27. Sun, J., Wang, H., Li, Y., Zhao, M. (2021). Porous Co3O4 column as a high-performance Lithium anode material. J. Porous Mater., 28 (3), 889–894, DOI: 10.1007/s10934-021-01041-z
  28. Li, Z., Yang, J., Zhou, Y., Cui, J., Ma, Y., Geng, C., Kang, Y., Liu, J., Yang, C. (2020). Influence of different preparation methods on the activity of Ce and Mo co-doped ZSM-5 catalysts for the selective catalytic reduction of NOx by NH3, Environ. Sci. Pollut. Res., 27 (32), 40495–40503, DOI: 10.1007/s11356-020-10052-3
  29. Zhang, Y., Zhu, K., Duan, X., Li, P., Zhou, X., Yuan, W. (2014). Synthesis of hierarchical ZSM-5 zeolite using CTAB interacting with carboxyl-ended organosilane as a mesotemplate. RSC Adv., 4 (28), 14471–14474, DOI: 10.1039/c3ra46646a
  30. Wang, L., Xu, Y., Tan, X., Tapas, S., Zhang, J. (2017). Aim and shoot: Molecule-imprinting polymer coated MoO3 for selective SERS detection and photocatalytic destruction of low-level organic contaminants. RSC Adv., vol. 7, no. 58, pp. 36201–36207, DOI: 10.1039/c7ra05547a
  31. Anuradha, C.T., Raji, P. (2020). Facile synthesis and characterization of Co3O4 nanoparticles for high-performance supercapacitors using Camellia sinensis. Appl. Phys. A Mater. Sci. Process., 126 (3), DOI: 10.1007/s00339-020-3352-8
  32. Zhou, X.J., Shi, P.H., Qin, Y.F., Fan, J.C., Min, Y.L., Yao, W.F. (2016). Synthesis of Co3O4/graphene composite catalysts through CTAB-assisted method for orange II degradation by activation of peroxymonosulfate. J. Mater. Sci. Mater. Electron., 27 (1), 1020–1030, DOI: 10.1007/s10854-015-3847-9
  33. Krisnandi, Y.K., Nurani, D.A., Reza, M., Samodro, B.A., Suwardiyanto, S., Susianto, N., Putrananda, A.T., Saragi, I.R., Umar, A., Choi, S.-M., Howe, R.F. (2019). Partial Oxidation of Methane to Methanol on Cobalt Oxide-Modified Hierarchical ZSM-5. Biogas - Recent Advances and Integrated Approaches May, Intech Open Publisher. DOI: 10.5772/intechopen.86133
  34. Cui, H.J., Shi, J.W., Yuan, B., Fu, M.L. (2013). Synthesis of porous magnetic ferrite nanowires containing Mn and their application in water treatment. J. Mater. Chem. A, 1 (19), 5902–5907, DOI: 10.1039/c3ta01692g
  35. Goyal, A., Bansal, S., Samuel, P., Kumar, V. , Singhal, S. (2014). CoMn0.2Fe1.8O4 ferrite nanoparticles engineered by sol-gel technology: An expert and versatile catalyst for the reduction of nitroaromatic compounds. J. Mater. Chem. A, 2 (44), 18848–18860, DOI: 10.1039/c4ta03900a
  36. Krisnandi, Y.K., Nurani, D.A., Alfian, D.V., Sofyani, U., Faisal, M., Saragi, I. R., Pamungkas, A.Z., Pratama, A.P. (2021). The new challenge of partial oxidation of methane over Fe2O3/NaY and Fe3O4/NaY heterogeneous catalysts. Heliyon, 7 (11), 0–7, DOI: 10.1016/j.heliyon.2021.e08305
  37. Kosinov, N., Coumans, F.J.A.G., Li, G., Uslamin, E., Mezari, B., Wijpkema, A.S.G., Pidko, E.A., Hensen, E.J.M. (2017). Stable Mo/HZSM-5 methane dehydroaromatization catalysts optimized for high-temperature calcination-regeneration. J. Catal., 346, 125–133, DOI: 10.1016/j.jcat.2016.12.006
  38. Abdelsayed, V., Smith, M.W., Shekhawat, D. (2015). Investigation of the stability of Zn-based HZSM-5 catalysts for methane dehydroaromatization. Appl. Catal. A Gen., 505, 365–374, DOI: 10.1016/j.apcata.2015.08.017
  39. Lónyi, F., Valyon, J. (2001), On the interpretation of the NH3-TPD patterns of H-ZSM-5 and H-mordenite, Microporous Mesoporous Mater., 47 (2–3), 293–301. DOI: 10.1016/s1387-1811(01)00389-4
  40. Wei, Z., Chen, l., Cao, Q., Wen, Z., Zhou, Z., Xu, Y., Zhu, X. (2017). Steamed Zn/ZSM-5 catalysts for improved methanol aromatization with high stability, Fuel Process. Technol., 162 (66–77), DOI: 10.1016/j.fuproc.2017.03.026
  41. Liu, C., Wang, H., Karim, A.M., Sun, J., Wang, Y. (2014). Catalytic fast pyrolysis of lignocellulosic biomass. Chem. Soc. Rev., 43 (22), 7594–7623, DOI: 10.1039/c3cs60414d
  42. Yao, G., Wu, G., Dai, W., Guan, N., Li, L. (2015), Hydrodeoxygenation of lignin-derived phenolic compounds over bi-functional Ru/H-Beta under mild conditions, Fuel, 150, 175–183. DOI: 10.1016/j.fuel.2015.02.035
  43. Zhao, C., Lercher, J.A. (2012), Selective Hydrodeoxygenation of Lignin-Derived Phenolic Monomers and Dimers to Cycloalkanes on Pd/C and HZSM-5 Catalysts, ChemCatChem, 4 (1), 64–68, DOI: 10.1002/cctc.201100273
  44. Guo, M., Peng, J., Yang, Q., Li, C. (2018). Highly Active and Selective RuPd Bimetallic NPs for the Cleavage of the Diphenyl Ether C-O Bond. ACS Catal., 8 (12), 11174–11183, DOI: 10.1021/acscatal.8b03253
  45. Jiang, L., Guo, H., Li, C., Zhou, P., Zhang, Z. (2019), Selective cleavage of lignin and lignin model compounds without external hydrogen, catalyzed by heterogeneous nickel catalysts, Chem. Sci., 10 (16), 4458–4468, DOI: 10.1039/c9sc00691e
  46. Zheng, A., Zhao, Z., Chang, S., Huang, Z., Wu, H., Wang, X., He, F., Li, H. (2014). Effect of crystal size of ZSM-5 on the aromatic yield and selectivity from catalytic fast pyrolysis of biomass. Journal of Molecular Catalysis A: Chemical, 383-384, 23–30. DOI: 10.1016/j.molcata.2013.11.005
  47. Denardin, F.G., Perez-Lopez, O.W. (2019). Methane dehydroaromatization over Fe-M/ZSM-5 catalysts (M = Zr, Nb, Mo), Microporous and Mesoporous Materials, 295, 109961. DOI: 10.1016/j.micromeso.109961
  48. Engtrakul, C., Mukarakate, C., Starace, A.K., Magrini, K.A., Rogers, A.K., Yung, M.M. (2015). Effect of ZSM-5 acidity on aromatic product selectivity during upgrading of pine pyrolysis vapors. Catalysis Today, 269, 175-181. DOI: 10.1016/j.cattod.2015.10.032
  49. Amakawa, K., Wang, Y., Kröhnert, J., Schlögl, R., Trunschke, A. (2019), Acid sites on silica-supported molybdenum oxides probed by ammonia adsorption: Experiment and theory, Molec. Catal., 478, 110580, DOI: 10.1016/j.mcat.2019.110580
  50. Maddi, B., Davidson, S., Job, H., Dagle, R., Guo, M., Gray, M., Ramasamy, K.K. (2020). Production of Gaseous Olefins from Syngas over a Cobalt-HZSM-5 Catalyst. Catalysis Letters, 151 (2), 526-537. DOI: 10.1007/s10562-020-03324-7
  51. Jiang, W., Cao, J.-P., Zhu, C., Xie, T., Zhao, X.-Y., Zhao, M., Bai, H.C. (2021). Selective cleavage of lignin-derived diphenyl ether C-O bond over weakly acidic Ni/Nb2O5 catalyst. Fuel, 295, 120635. DOI: 10.1016/j.fuel.2021.120635
  52. Navajas, A., Jim, E., Romero-sarria, F. (2020). Molybdenum Oxide for the Production of Biodiesel from Oil with High Free Fatty Acids Content. Catalysts, 10(2), 158. DOI: 10.3390/catal10020158
  53. Ben, H., Ragauskas, A. J. (2013). Influence of Si/Al Ratio of ZSM-5 Zeolite on the Properties of Lignin Pyrolysis Products. ACS Sustainable Chemistry & Engineering, 1(3), 316–324. DOI: 10.1021/sc300074n
  54. Smail, H.A., Rehan, M., Shareef, K.M., Ramli, Z., Nizami, A.S., Gardy, J. (2019). Synthesis of uniform mesoporous zeolite ZSM-5 catalyst for friedel-crafts acylation. ChemEngineering, 3 (2), 1–11, DOI: 10.3390/chemengineering3020035
  55. Gläser, R., Juan Carlos, U.R., Lazaridis, P.A., Fotopoulos, A.P., Karakoulia, S.A., Triantafyllidis, K.S. (2018). Catalytic Fast Pyrolysis of Kraft Lignin With Conventional, Mesoporous and Nanosized ZSM-5 Zeolite for the Production of Alkyl-Phenols and Aromatics. Front. Chem. 1, 295, DOI: 10.3389/fchem.2018.00295
  56. Zhang, W., Oyama, S.T. (1996), In situ laser Raman studies of intermediates in the catalytic oxidation of ethanol over supported molybdenum oxide, J. Phys. Chem., 100 (25), 10759–10767, DOI: 10.1021/jp960917d

Last update:

No citation recorded.

Last update:

No citation recorded.