skip to main content

Effect of pH on the Performance of Bi2O2CO3 Nanoplates for Methylene Blue Removal in Water by Adsorption and Photocatalysis

1Laboratory of Nanomaterial, An Giang University, 18 Ung Van Khiem St., Dong Xuyen Ward, Long Xuyen City, An Giang Province, Viet Nam

2Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Viet Nam

3Department of Environmental Engineering, International University, Quarter 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Viet Nam

4 Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet St., Dist. 10, Ho Chi Minh City, Viet Nam

View all affiliations
Received: 7 Jan 2022; Revised: 13 Mar 2022; Accepted: 14 Mar 2022; Available online: 21 Mar 2022; Published: 30 Jun 2022.
Editor(s): Bunjerd Jongsomjit
Open Access Copyright (c) 2022 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image

In this study, a facile low-temperature hydrothermal method was applied for the synthesis of bismuth subcarbonate nanoplates (Bi2O2CO3). The material was then characterized by FTIR, XRD, SEM, BET, and TGA. The applicability of Bi2O2CO3 was evaluated via the treatment of methyl blue (MB) in water by adsorption and photocatalytic degradation. The experiment results with different pH from 2 to 12 indicate that the pH of the solution affected the surface charge of the synthesized Bi2O2CO3, thus having strong effects on the adsorption and photocatalytic degradation abilities of Bi2O2CO3 for MB removal. In adsorption tests, pH 6–7 is the most suitable condition for the adsorption of Bi2O2CO3. In photocatalytic tests, Bi2O2CO3 had the highest and lowest efficiencies of 64.19% (pH 5) and 17.59% (pH 2), respectively, under UV irradiation for 300 min. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (

Fulltext View|Download
Keywords: Bi2O2CO3; pH; Methylene Blue; Adsorption; Photocatalysis

Article Metrics:

  1. Afkhami, A., Saber-Tehrani, M., Bagheri, H. (2010). Modified maghemite nanoparticles as an efficient adsorbent for removing some cationic dyes from aqueous solution. Desalination, 263, 240–248. DOI: 10.1016/j.desal.2010.06.065
  2. Gonawala, K.H., Mehta, M.J. (2014). Removal of color from different dye wastewater by using ferric oxide as an adsorbent. International Journal of Engineering Research and Applications, 4, 102–109
  3. Marimuthu, S., Antonisamy, A.J., Malayandi, S., Rajendran, K., Tsai, P.-C., Pugazhendhi, A., Ponnusamy, V.K. (2020). Silver nanoparticles in dye effluent treatment: A review on synthesis, treatment methods, mechanisms, photocatalytic degradation, toxic effects and mitigation of toxicity. Journal of Photochemistry and Photobiology B: Biology, 205, 111823. DOI: 10.1016/j.jphotobiol.2020.111823
  4. Payan, A., Fattahi, M., Roozbehani, B. (2018). Synthesis, characterization and evaluations of TiO2 nanostructures prepared from different titania precursors for photocatalytic degradation of 4-chlorophenol in aqueous solution. Journal of Environmental Health Science & Engineering, 16, 41–54. DOI: 10.1007/s40201-018-0295-5
  5. Reddy, D.R., Dinesh, G.K., Anandan, S., Sivasankar, T. (2016). Sonophotocatalytic treatment of Naphthol Blue Black dye and real textile wastewater using synthesized Fe doped TiO2. Chemical Engineering and Processing: Process Intensification, 99, 10–18. DOI: 10.1016/j.cep.2015.10.019
  6. Al-Mamun, M., Kader, S., Islam, M., Khan, M. (2019). Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: A review. Journal of Environmental Chemical Engineering, 7, 103248. DOI: 10.1016/j.jece.2019.103248
  7. Thi Khanh Van, N., Dinh, N.N., Van Chien, N., Huy, N.N., Trung, N.T., Toan, T.Q., Van Thanh, D. (2021). A simple and efficient ultrasonic-assisted electrochemical approach for scalable production of nitrogen-doped TiO2 nanocrystals. Nanotechnology, 32, 465602. DOI: 10.1088/1361-6528/ac1b55
  8. Que, V.N.X., Khoi, T.T., Thuy, N.T., Dung, T.T.M., Binh, D.T.T., Huy, N.N. (2021). Factors Determining the Removal Efficiency of Procion MX in Waters Using Titanate Nanotubes Catalyzed by UV Irradiation. Journal of Nanotechnology, 2021, 8870453. DOI: 10.1155/2021/8870453
  9. Chakrabarti, S., Dutta, B.K. (2004). Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst. Journal of Hazardous Materials, 112, 269–278. DOI: 10.1016/j.jhazmat.2004.05.013
  10. Bagheri, M., Najafabadi, N.R., Borna, E. (2020). Removal of reactive blue 203 dye photocatalytic using ZnO nanoparticles stabilized on functionalized MWCNTs. Journal of King Saud University-Science, 32, 799–804. DOI: 10.1016/j.jksus.2019.02.012
  11. Weldegebrieal, W., Kassegn, G. (2020). Synthesis method, antibacterial and photocatalytic activity of ZnO nanoparticles for azo dyes in wastewater treatment: A review. Inorganic Chemistry Communications, 120, 108140. DOI: 10.1016/j.inoche.2020.108140
  12. Li, J.-h., Ren, J., Hao, Y.-j., Zhou, E.-p., Wang, Y., Wang, X.-j., Su, R., Liu, Y., Qi, X.-h., Li, F.-t. (2021). Construction of β-Bi2O3/Bi2O2CO3 heterojunction photocatalyst for deep understanding the importance of separation efficiency and valence band position. Journal of Hazardous Materials, 401, 123262. DOI: 10.1016/j.jhazmat.2020.123262
  13. Shahbazi, R., Payan, A., Fattahi, M. (2018). Preparation, evaluations and operating conditions optimization of nano TiO2 over graphene based materials as the photocatalyst for degradation of phenol. Journal of Photochemistry and Photobiology A: Chemistry, 364, 564–576. DOI: 10.1016/j.jphotochem.2018.05.032
  14. Bedia, J., Muelas-Ramos, V., Peñas-Garzón, M., Gómez-Avilés, A., Rodríguez, J.J., Belver, C. (2018). A review of photocatalytic water purification with metal organic frameworks. Catalysts, 9, 52. DOI: 10.3390/catal9010052
  15. Chen, L., Huang, R., Yin, S.-F., Luo, S.-L., Au, C.-T. (2012). Flower-like Bi2O2CO3: Facile synthesis and their photocatalytic application in treatment of dye-containing wastewater. Chemical Engineering Journal, 193, 123–130. DOI: 10.1016/j.cej.2012.04.023
  16. Nguyen, N.H., Wu, H.-Y., Bai, H. (2015). Photocatalytic reduction of NO2 and CO2 using molybdenum-doped titania nanotubes. Chemical Engineering Journal, 269, 60–66. DOI: 10.1016/j.cej.2015.01.099
  17. Kosmulski, M. (2006). pH-dependent surface charging and points of zero charge: III. Update. Journal of Colloid Interface Science, 298, 730–741. DOI: 10.1016/j.jcis.2006.01.003
  18. Van Hao, P., Minh, P.N., Hong, P.N., Huy, N.N., Oanh, P.T., Nguyen, H.T., Tran, T.D., Van Thanh, D., Van Dang, N. (2021). Gram-scale synthesis of electrochemically oxygenated graphene nanosheets for removal of methylene blue from aqueous solution. Nanotechnology, 32, 16LT01. DOI: 10.1088/1361-6528/abdc8b
  19. Huang, Y., Fan, W., Long, B., Li, H., Zhao, F., Liu, Z., Tong, Y., Ji, H. (2016). Visible light Bi2S3/Bi2O3/Bi2O2CO3 photocatalyst for effective degradation of organic pollutions. Applied Catalysis B: Environmental, 185, 68–76. DOI: 10.1016/j.apcatb.2015.11.043
  20. Zheng, Y., Duan, F., Chen, M., Xie, Y. (2010). Synthetic Bi2O2CO3 nanostructures: novel photocatalyst with controlled special surface exposed. Journal of Molecular Catalysis A: Chemical, 317, 34–40. DOI: 10.1016/j.molcata.2009.10.018
  21. Yang, L., Han, Q., Zhu, J., Wang, X. (2015). Synthesis of egg-tart shaped Bi2O2CO3 hierarchical nanostructures from single precursor and its photocatalytic performance. Materials Letters, 138, 235–237. DOI: 10.1016/j.matlet.2014.10.003
  22. Cheng, H., Huang, B., Yang, K., Wang, Z., Qin, X., Zhang, X., Dai, Y. (2010). Facile template‐free synthesis of Bi2O2CO3 hierarchical microflowers and their associated photocatalytic activity. ChemPhysChem, 11, 2167–2173. DOI: 10.1002/cphc.200901017
  23. Nguyen, N.H., Bai, H. (2014). Photocatalytic removal of NO and NO2 using titania nanotubes synthesized by hydrothermal method. Journal of Environmental Sciences, 26, 1180–1187. DOI: 10.1016/S1001-0742(13)60544-6
  24. Wang, B., Wang, J., Zhang, Y., Mei, Y., Lian, P. (2017). Electrochemical performance of Bi2O2CO3 nanosheets as negative electrode material for supercapacitors. Ceramics International, 43, 9310–9316. DOI: 10.1016/j.ceramint.2017.04.092
  25. Nguyen, T.T., Le, T.T., Phan, P.T., Nguyen, N.H. (2020). Preparation, characterization, and application of novel ferric oxide-amine material for removal of nitrate and phosphate in water. Journal of Chemistry, 2020, 8583543. DOI: 10.1155/2020/8583543
  26. Yu, C., Zhou, W., Zhu, L., Li, G., Yang, K., Jin, R. (2016). Integrating plasmonic Au nanorods with dendritic like α-Bi2O3/Bi2O2CO3 heterostructures for superior visible-light-driven photocatalysis. Applied Catalysis B: Environmental, 184, 1–11. DOI: 10.1016/j.apcatb.2015.11.026
  27. Asenjo, N.G., Santamaria, R., Blanco, C., Granda, M., Alvarez, P., Menendez, R. (2013). Correct use of the Langmuir–Hinshelwood equation for proving the absence of a synergy effect in the photocatalytic degradation of phenol on a suspended mixture of titania and activated carbon. Carbon, 55, 62–69. DOI: 10.1016/j.carbon.2012.12.010
  28. Kumar, K.V., Porkodi, K., Rocha, F. (2008). Langmuir–Hinshelwood kinetics–a theoretical study. Catalysis Communications, 9, 82–84. DOI: 10.1016/j.catcom.2007.05.019
  29. Sharma, Y.C. (2010). Optimization of parameters for adsorption of methylene blue on a low-cost activated carbon. Journal of Chemical Engineering Data, 55, 435–439. DOI: 10.1021/je900408a
  30. Madhusudan, P., Zhang, J., Cheng, B., Liu, G. (2013). Photocatalytic degradation of organic dyes with hierarchical Bi2O2CO3 microstructures under visible-light. CrystEngComm, 15, 231–240. DOI: 10.1039/C2CE26639C

Last update:

No citation recorded.

Last update:

No citation recorded.