Electrochemical Study of Copper Ferrite as a Catalyst for CO2 Photoelectrochemical Reduction

Kaykobad Md. Rezaul Karim -  Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Kuantan, Pahang, Malaysia
Huei Ruey Ong -  1Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Kuantan, Pahang 2Faculty of Engineering and Technology, DRB-HICOM University of Automotive Malaysia, 26607 Pekan, Pahang, Malaysia
Hamidah Abdullah -  Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Kuantan, Pahang, Malaysia
Abu Yousuf -  Faculty of Engineering Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Kuantan, Pahang, Malaysia
Chin Kui Cheng -  Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Kuantan, Pahang, Malaysia
*Mohd. Maksudur Rahman Khan -  Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Kuantan, Pahang, Malaysia
Received: 4 Jul 2017; Published: 11 Jun 2018.
Open Access Copyright (c) 2018 Bulletin of Chemical Reaction Engineering & Catalysis
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Citation Format:
Cover Image
Abstract

In this work, p-type CuFe2O4 was synthesized by sol gel method. The prepared CuFe2O4 was used as photocathode catalyst for photoelectrochemical (PEC) CO2 reduction. The XRD, UV-Visible Spectroscopy (UV-Vis), and Mott-Schottky (MS) experiments were done to characterize the catalyst. Linear sweep voltammetry (LSV) was employed to evaluate the visible light (λ>400 nm) effect of this catalyst for CO2 reduction.  The band gap energy of the catalyst was calculated from the UV-Vis and was found 1.30 eV. Flat band potential of the prepared CuFe2O4 was also calculated and found 0.27 V versus Ag/AgCl. Under light irradiation in the CO2-saturated NaHCO3 solution, a remarkable current development associated with CO2 reduction was found during LSV for the prepared electrode from onset potential -0.89 V with a peak current emerged at -1.01 V (vs Ag/AgCl) representing the occurrence of CO2 reduction reaction. In addition, the mechanism of PEC was proposed for the photocathode where the necessity of a bias potential in the range of 0.27 to ~ -1.0 V vs Ag/AgCl was identified which could effectively inhibit the electron-hole (e-/h+) recombination process leading to an enhancement of CO2 reduction reactions. Copyright © 2018 BCREC Group. All rights reserved

Received: 4th July 2017; Revised: 5th November 2017; Accepted: 15th November 2017; Available online: 11st June 2018; Published regularly: 1st August 2018

How to Cite: Karim, K.M.R., Ong, H.R., Abdullah, H., Yousuf, A., Cheng, C.K., Khan, M.K.R. (2018). Electrochemical Study of Copper Ferrite as a Catalyst for CO2 Photoelectrochemical Reduction. Bulletin of Chemical Reaction Engineering & Catalysis, 13 (2): 236-244 (doi:10.9767/bcrec.13.2.1317.236-244)

 

Keywords
CuFe2O4; CO2 reduction; onset potential; photoelectrochemical reduction; linear sweep voltammetry

Article Metrics:

  1. Hu, B., Guild, C., Suib, S.L. (2013). Thermal, electrochemical, and photochemical conversion of CO2 to fuels and value-added products. Journal of CO2 Utilization, 1: 18-27.
  2. de Brito, J.F., Araujo, A.R., Rajeshwar, K., Zanoni, M.V.B. (2015). Photoelectrochemical reduction of CO2 on Cu/Cu2O films: Product distribution and pH effects. Chemical Engineering Journal, 264: 302-309.
  3. Jhong, H.-R.M., Ma, S., Kenis, P.J.A. (2013). Electrochemical conversion of CO2 to useful chemicals: current status, remaining challenges, and future opportunities. Current Opinion in Chemical Engineering, 2: 191-199.
  4. Jiang, Z., Xiao, T., Kuznetsov, V., Edwards, P., Turning carbon dioxide into fuel, 2010.
  5. Awad, N.K., Ashour, E.A., Allam, N.K. (2014). Recent advances in the use of metal oxide-based photocathodes for solar fuel production. Journal of Renewable and Sustainable Energy, 6: 022702.
  6. Abdullah, H., Khan, M.M.R., Ong, H.R., Yaakob, Z. (2017). Modified TiO2 photocatalyst for CO2 photocatalytic reduction: An overview. Journal of CO2 Utilization, 22: 15-32.
  7. Tu, W., Zhou, Y., Zou, Z. (2014). Photocatalytic Conversion of CO2 into Renewable Hydrocarbon Fuels: State‐of‐the‐Art Accomplishment, Challenges, and Prospects. Advanced Materials, 26: 4607-4626.
  8. Schwarz, H.A., Dodson, R.W. (1989). Reduction potentials of CO2- and the alcohol radicals. Journal of Physical Chemistry, 93.
  9. Qiao, J., Liu, Y., Hong, F., Zhang, J. (2014). A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chemical Society Reviews, 43: 631-675.
  10. Shen, Q., Chen, Z., Huang, X., Liu, M., Zhao, G. (2015). High-yield and selective photoelectrocatalytic reduction of CO2 to formate by metallic copper decorated Co3O4 nanotube arrays. Environmental science & technology, 49: 5828-5835.
  11. Pesci, F.M., Wang, G., Klug, D.R., Li, Y., Cowan, A.J. (2013). Efficient Suppression of Electron–Hole Recombination in Oxygen-Deficient Hydrogen-Treated TiO2 Nanowires for Photoelectrochemical Water Splitting. The Journal of Physical Chemistry C, 117: 25837-25844.
  12. Sierra-Ávila, R., Pérez-Alvarez, M., Cadenas-Pliego, G., Ávila-Orta, C.A., Betancourt-Galindo, R., Jiménez-Regalado, E., Jiménez-Barrera, R.M., Martínez-Colunga, J.G. (2014). Synthesis of Copper Nanoparticles Coated with Nitrogen Ligands. Journal of Nanomaterials, 2014: 361791.
  13. Shoji, S., Yin, G., Nishikawa, M., Atarashi, D., Sakai, E., Miyauchi, M. (2016). Photocatalytic reduction of CO2 by CuxO nanocluster loaded SrTiO3 nanorod thin film. Chemical Physics Letters, 658: 309-314.
  14. Ghadimkhani, G., de Tacconi, N.R., Chanmanee, W., Janaky, C., Rajeshwar, K. (2013). Efficient solar photoelectrosynthesis of methanol from carbon dioxide using hybrid CuO-Cu2O semiconductor nanorod arrays. Chemical Communications, 49: 1297-1299.
  15. Huang, X., Cao, T., Liu, M., Zhao, G. (2013). Synergistic photoelectrochemical synthesis of formate from CO2 on {121̅} hierarchical Co3O4. The Journal of Physical Chemistry C, 117: 26432-26440.
  16. Kamimura, S., Murakami, N., Tsubota, T., Ohno, T. (2015). Fabrication and characterization of a p-type Cu3Nb2O8 photocathode toward photoelectrochemical reduction of carbon dioxide. Applied Catalysis B: Environmental, 174: 471-476.
  17. Yang, H., Yan, J., Lu, Z., Cheng, X., Tang, Y. (2009). Photocatalytic activity evaluation of tetragonal CuFe2O4 nanoparticles for the H2 evolution under visible light irradiation. Journal of Alloys and Compounds, 476: 715-719.
  18. Fu, Y., Chen, Q., He, M., Wan, Y., Sun, X., Xia, H., Wang, X. (2012). Copper ferrite-graphene hybrid: a multifunctional heteroarchitecture for photocatalysis and energy storage. Industrial & Engineering Chemistry Research, 51: 11700-11709.
  19. Zhao, Y., He, G., Dai, W., Chen, H. (2014). High catalytic activity in the phenol hydroxylation of magnetically separable CuFe2O4-reduced graphene oxide. Industrial & Engineering Chemistry Research, 53: 12566-12574.
  20. Nakhjavan, B., Tahir, M., Panthöfer, M., Gao, H., D. Schladt, T., Gasi, T., Ksenofontov, V., Branscheid, R., Weber, S., Kolb, U., Schreiber, L., Tremel, W., Synthesis, characterization and functionalization of nearly mono-disperse copper ferrite Cu(x)Fe(3-x)O(4) nanoparticles, Journal of Materials Chemistry, 21: 6909-6915
  21. Goya, G.F. (1997). Nanocrystalline CuFe2O4 obtained by mechanical grinding. Journal of Materials Science Letters, 16: 563-565.
  22. Valdés-Solís, T., Tartaj, P., Marbán, G., Fuertes, A.B. (2007). Facile synthetic route to nanosized ferrites by using mesoporous silica as a hard template, Nanotechnology, 18: 145603
  23. Kezzim, A., Nasrallah, N., Abdi, A., Trari, M. (2011). Visible light induced hydrogen on the novel hetero-system CuFe2O4/TiO2. Energy Conversion and Management, 52: 2800-2806.
  24. Selvan, R.K., Augustin, C.O., Šepelák, V., Berchmans, L.J., Sanjeeviraja, C., Gedanken, A. (2008). Synthesis and characterization of CuFe2O4/CeO2 nanocomposites. Materials Chemistry and Physics, 112: 373-380.
  25. Uddin, M.R., Khan, M.R., Rahman, M.W., Yousuf, A., Cheng, C.K. (2015). Photocatalytic reduction of CO2 into methanol over CuFe2O4/TiO2 under visible light irradiation. Reaction Kinetics, Mechanisms and Catalysis, 116: 589-604.
  26. Khan, M.M.R., Uddin, M.R., Abdullah, H., Karim, K.M.R., Yousuf, A., Cheng, C.K., Ong, H.R. (2016). Preparation and Characterization of CuFe2O4/TiO2 Photocatalyst for the Conversion of CO2 into Methanol under Visible Light. International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering, 10: 1165-1172.
  27. Woon, C.W., Ong, H.R., Chong, K.F., Chan, K.M., Khan, M.M.R. (2015). MnO2/CNT as ORR Electrocatalyst in Air-Cathode Microbial Fuel Cells. Procedia Chemistry, 16: 640-647.
  28. Khan, M.R., Chan, K.M., Ong, H.R., Cheng, C.K., Rahman, W. (2015). Nanostructured Pt/MnO2 Catalysts and Their Performance for Oxygen Reduction Reaction in Air Cathode Microbial Fuel Cell. International Journal of Electrical, Computer, Electronics and Communication Engineering, 9: 247-253.
  29. Woon, C.W., Islam, M.A., Ethiraj, B., Ong, H.R., Cheng, C.K., Chong, K.F., Hedge, G., Khan, M., Rahman, M. (2017). Carbon Nanotube‐Modified MnO2: An Efficient Electrocatalyst for Oxygen Reduction Reaction. Chemistry Select., 2: 7637-7644.
  30. Prasad, D.M.R., Rahmat, N.S.B., Ong, H.R., Cheng, C.K., Khan, M.R., Sathiyamoorthy, D. (2016). Preparation and Characterization of Photocatalyst for the Conversion of Carbon Dioxide to Methanol. International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering, 10: 464-467.
  31. Mandal, D., Sharma, L.K., Mukherjee, S. (2016). Defect-induced weak ferromagnetism in transition metal-doped ZnO nanoparticles. Applied Physics A, 122: 1033.
  32. Akhtar, M.S., Riaz, S., Mehmood, R.F., Ahmad, K.S., Alghamdi, Y., Malik, M.A., Naseem, S. (2017). Surfactant and template free synthesis of porous ZnS nanoparticles. Materials Chemistry and Physics, 189: 28-34.
  33. Marotti, R.E., Giorgi, P., Machado, G., Dalchiele, E.A. (2006). Crystallite size dependence of band gap energy for electrodeposited ZnO grown at different temperatures. Solar Energy Materials and Solar Cells, 90: 2356-2361.
  34. Wang, J.-C., Zhang, L., Fang, W.-X., Ren, J., Li, Y.-Y., Yao, H.-C., Wang, J.-S., Li, Z.-J. (2015). Enhanced Photoreduction CO2 Activity over Direct Z-Scheme α-Fe2O3/Cu2O Heterostructures under Visible Light Irradiation. ACS Appl. Mater. Interfaces, 7: 8631-8639.
  35. Zhu, X., Yang, D., Wei, W., Jiang, M., Li, L., Zhu, X., You, J., Wang, H. (2014). Magnetic copper ferrite nanoparticles/TEMPO catalyzed selective oxidation of activated alcohols to aldehydes under ligand- and base-free conditions in water. RSC Advances, 4: 64930-64935.
  36. Hori, Y., Murata, A., Takahashi, R. (1989). Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 85: 2309-2326.
  37. Schouten, K.J.P., Kwon, Y., van der Ham, C.J.M., Qin, Z., Koper, M.T.M. (2011). A new mechanism for the selectivity to C1 and C2 species in the electrochemical reduction of carbon dioxide on copper electrodes. Chemical Science, 2: 1902-1909.
  38. Hori, Y., Murata, A., Takahashi, R., Suzuki, S. (1988). Enhanced formation of ethylene and alcohols at ambient temperature and pressure in electrochemical reduction of carbon dioxide at a copper electrode. Journal of the Chemical Society, Chemical Communications, 1: 17-19.
  39. Gu, J., Wuttig, A., Krizan, J.W., Hu, Y., Detweiler, Z.M., Cava, R.J., Bocarsly, A.B. (2013). Mg-Doped CuFeO2 photocathodes for photoelectrochemical reduction of carbon dioxide. The Journal of Physical Chemistry C, 117: 12415-12422.