Electrochemical Study of Copper Ferrite as a Catalyst for CO2 Photoelectrochemical Reduction

DOI: https://doi.org/10.9767/bcrec.13.2.1317.236-244
Copyright (c) 2018 Bulletin of Chemical Reaction Engineering & Catalysis
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Cover Image

Article Metrics: (Click on the Metric tab below to see the detail)

Article Info
Submitted: 04-07-2017
Published: 11-06-2018
Section: Original Research Articles
Fulltext PDF Tell your colleagues Email the author

In this work, p-type CuFe2O4 was synthesized by sol gel method. The prepared CuFe2O4 was used as photocathode catalyst for photoelectrochemical (PEC) CO2 reduction. The XRD, UV-Visible Spectroscopy (UV-Vis), and Mott-Schottky (MS) experiments were done to characterize the catalyst. Linear sweep voltammetry (LSV) was employed to evaluate the visible light (λ>400 nm) effect of this catalyst for CO2 reduction.  The band gap energy of the catalyst was calculated from the UV-Vis and was found 1.30 eV. Flat band potential of the prepared CuFe2O4 was also calculated and found 0.27 V versus Ag/AgCl. Under light irradiation in the CO2-saturated NaHCO3 solution, a remarkable current development associated with CO2 reduction was found during LSV for the prepared electrode from onset potential -0.89 V with a peak current emerged at -1.01 V (vs Ag/AgCl) representing the occurrence of CO2 reduction reaction. In addition, the mechanism of PEC was proposed for the photocathode where the necessity of a bias potential in the range of 0.27 to ~ -1.0 V vs Ag/AgCl was identified which could effectively inhibit the electron-hole (e-/h+) recombination process leading to an enhancement of CO2 reduction reactions. Copyright © 2018 BCREC Group. All rights reserved

Received: 4th July 2017; Revised: 5th November 2017; Accepted: 15th November 2017; Available online: 11st June 2018; Published regularly: 1st August 2018

How to Cite: Karim, K.M.R., Ong, H.R., Abdullah, H., Yousuf, A., Cheng, C.K., Khan, M.K.R. (2018). Electrochemical Study of Copper Ferrite as a Catalyst for CO2 Photoelectrochemical Reduction. Bulletin of Chemical Reaction Engineering & Catalysis, 13 (2): 236-244 (doi:10.9767/bcrec.13.2.1317.236-244)

 

Keywords

CuFe2O4; CO2 reduction; onset potential; photoelectrochemical reduction; linear sweep voltammetry

  1. Kaykobad Md. Rezaul Karim 
    Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Kuantan, Pahang, Malaysia
  2. Huei Ruey Ong 
    1Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Kuantan, Pahang 2Faculty of Engineering and Technology, DRB-HICOM University of Automotive Malaysia, 26607 Pekan, Pahang, Malaysia
  3. Hamidah Abdullah 
    Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Kuantan, Pahang, Malaysia
  4. Abu Yousuf 
    Faculty of Engineering Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Kuantan, Pahang, Malaysia
  5. Chin Kui Cheng 
    Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Kuantan, Pahang, Malaysia
  6. Mohd. Maksudur Rahman Khan 
    Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Kuantan, Pahang, Malaysia
  1. Hu, B., Guild, C., Suib, S.L. (2013). Thermal, electrochemical, and photochemical conversion of CO2 to fuels and value-added products. Journal of CO2 Utilization, 1: 18-27.
  2. de Brito, J.F., Araujo, A.R., Rajeshwar, K., Zanoni, M.V.B. (2015). Photoelectrochemical reduction of CO2 on Cu/Cu2O films: Product distribution and pH effects. Chemical Engineering Journal, 264: 302-309.
  3. Jhong, H.-R.M., Ma, S., Kenis, P.J.A. (2013). Electrochemical conversion of CO2 to useful chemicals: current status, remaining challenges, and future opportunities. Current Opinion in Chemical Engineering, 2: 191-199.
  4. Jiang, Z., Xiao, T., Kuznetsov, V., Edwards, P., Turning carbon dioxide into fuel, 2010.
  5. Awad, N.K., Ashour, E.A., Allam, N.K. (2014). Recent advances in the use of metal oxide-based photocathodes for solar fuel production. Journal of Renewable and Sustainable Energy, 6: 022702.
  6. Abdullah, H., Khan, M.M.R., Ong, H.R., Yaakob, Z. (2017). Modified TiO2 photocatalyst for CO2 photocatalytic reduction: An overview. Journal of CO2 Utilization, 22: 15-32.
  7. Tu, W., Zhou, Y., Zou, Z. (2014). Photocatalytic Conversion of CO2 into Renewable Hydrocarbon Fuels: State‐of‐the‐Art Accomplishment, Challenges, and Prospects. Advanced Materials, 26: 4607-4626.
  8. Schwarz, H.A., Dodson, R.W. (1989). Reduction potentials of CO2- and the alcohol radicals. Journal of Physical Chemistry, 93.
  9. Qiao, J., Liu, Y., Hong, F., Zhang, J. (2014). A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chemical Society Reviews, 43: 631-675.
  10. Shen, Q., Chen, Z., Huang, X., Liu, M., Zhao, G. (2015). High-yield and selective photoelectrocatalytic reduction of CO2 to formate by metallic copper decorated Co3O4 nanotube arrays. Environmental science & technology, 49: 5828-5835.
  11. Pesci, F.M., Wang, G., Klug, D.R., Li, Y., Cowan, A.J. (2013). Efficient Suppression of Electron–Hole Recombination in Oxygen-Deficient Hydrogen-Treated TiO2 Nanowires for Photoelectrochemical Water Splitting. The Journal of Physical Chemistry C, 117: 25837-25844.
  12. Sierra-Ávila, R., Pérez-Alvarez, M., Cadenas-Pliego, G., Ávila-Orta, C.A., Betancourt-Galindo, R., Jiménez-Regalado, E., Jiménez-Barrera, R.M., Martínez-Colunga, J.G. (2014). Synthesis of Copper Nanoparticles Coated with Nitrogen Ligands. Journal of Nanomaterials, 2014: 361791.
  13. Shoji, S., Yin, G., Nishikawa, M., Atarashi, D., Sakai, E., Miyauchi, M. (2016). Photocatalytic reduction of CO2 by CuxO nanocluster loaded SrTiO3 nanorod thin film. Chemical Physics Letters, 658: 309-314.
  14. Ghadimkhani, G., de Tacconi, N.R., Chanmanee, W., Janaky, C., Rajeshwar, K. (2013). Efficient solar photoelectrosynthesis of methanol from carbon dioxide using hybrid CuO-Cu2O semiconductor nanorod arrays. Chemical Communications, 49: 1297-1299.
  15. Huang, X., Cao, T., Liu, M., Zhao, G. (2013). Synergistic photoelectrochemical synthesis of formate from CO2 on {121̅} hierarchical Co3O4. The Journal of Physical Chemistry C, 117: 26432-26440.
  16. Kamimura, S., Murakami, N., Tsubota, T., Ohno, T. (2015). Fabrication and characterization of a p-type Cu3Nb2O8 photocathode toward photoelectrochemical reduction of carbon dioxide. Applied Catalysis B: Environmental, 174: 471-476.
  17. Yang, H., Yan, J., Lu, Z., Cheng, X., Tang, Y. (2009). Photocatalytic activity evaluation of tetragonal CuFe2O4 nanoparticles for the H2 evolution under visible light irradiation. Journal of Alloys and Compounds, 476: 715-719.
  18. Fu, Y., Chen, Q., He, M., Wan, Y., Sun, X., Xia, H., Wang, X. (2012). Copper ferrite-graphene hybrid: a multifunctional heteroarchitecture for photocatalysis and energy storage. Industrial & Engineering Chemistry Research, 51: 11700-11709.
  19. Zhao, Y., He, G., Dai, W., Chen, H. (2014). High catalytic activity in the phenol hydroxylation of magnetically separable CuFe2O4-reduced graphene oxide. Industrial & Engineering Chemistry Research, 53: 12566-12574.
  20. Nakhjavan, B., Tahir, M., Panthöfer, M., Gao, H., D. Schladt, T., Gasi, T., Ksenofontov, V., Branscheid, R., Weber, S., Kolb, U., Schreiber, L., Tremel, W., Synthesis, characterization and functionalization of nearly mono-disperse copper ferrite Cu(x)Fe(3-x)O(4) nanoparticles, Journal of Materials Chemistry, 21: 6909-6915
  21. Goya, G.F. (1997). Nanocrystalline CuFe2O4 obtained by mechanical grinding. Journal of Materials Science Letters, 16: 563-565.
  22. Valdés-Solís, T., Tartaj, P., Marbán, G., Fuertes, A.B. (2007). Facile synthetic route to nanosized ferrites by using mesoporous silica as a hard template, Nanotechnology, 18: 145603
  23. Kezzim, A., Nasrallah, N., Abdi, A., Trari, M. (2011). Visible light induced hydrogen on the novel hetero-system CuFe2O4/TiO2. Energy Conversion and Management, 52: 2800-2806.
  24. Selvan, R.K., Augustin, C.O., Šepelák, V., Berchmans, L.J., Sanjeeviraja, C., Gedanken, A. (2008). Synthesis and characterization of CuFe2O4/CeO2 nanocomposites. Materials Chemistry and Physics, 112: 373-380.
  25. Uddin, M.R., Khan, M.R., Rahman, M.W., Yousuf, A., Cheng, C.K. (2015). Photocatalytic reduction of CO2 into methanol over CuFe2O4/TiO2 under visible light irradiation. Reaction Kinetics, Mechanisms and Catalysis, 116: 589-604.
  26. Khan, M.M.R., Uddin, M.R., Abdullah, H., Karim, K.M.R., Yousuf, A., Cheng, C.K., Ong, H.R. (2016). Preparation and Characterization of CuFe2O4/TiO2 Photocatalyst for the Conversion of CO2 into Methanol under Visible Light. International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering, 10: 1165-1172.
  27. Woon, C.W., Ong, H.R., Chong, K.F., Chan, K.M., Khan, M.M.R. (2015). MnO2/CNT as ORR Electrocatalyst in Air-Cathode Microbial Fuel Cells. Procedia Chemistry, 16: 640-647.
  28. Khan, M.R., Chan, K.M., Ong, H.R., Cheng, C.K., Rahman, W. (2015). Nanostructured Pt/MnO2 Catalysts and Their Performance for Oxygen Reduction Reaction in Air Cathode Microbial Fuel Cell. International Journal of Electrical, Computer, Electronics and Communication Engineering, 9: 247-253.
  29. Woon, C.W., Islam, M.A., Ethiraj, B., Ong, H.R., Cheng, C.K., Chong, K.F., Hedge, G., Khan, M., Rahman, M. (2017). Carbon Nanotube‐Modified MnO2: An Efficient Electrocatalyst for Oxygen Reduction Reaction. Chemistry Select., 2: 7637-7644.
  30. Prasad, D.M.R., Rahmat, N.S.B., Ong, H.R., Cheng, C.K., Khan, M.R., Sathiyamoorthy, D. (2016). Preparation and Characterization of Photocatalyst for the Conversion of Carbon Dioxide to Methanol. International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering, 10: 464-467.
  31. Mandal, D., Sharma, L.K., Mukherjee, S. (2016). Defect-induced weak ferromagnetism in transition metal-doped ZnO nanoparticles. Applied Physics A, 122: 1033.
  32. Akhtar, M.S., Riaz, S., Mehmood, R.F., Ahmad, K.S., Alghamdi, Y., Malik, M.A., Naseem, S. (2017). Surfactant and template free synthesis of porous ZnS nanoparticles. Materials Chemistry and Physics, 189: 28-34.
  33. Marotti, R.E., Giorgi, P., Machado, G., Dalchiele, E.A. (2006). Crystallite size dependence of band gap energy for electrodeposited ZnO grown at different temperatures. Solar Energy Materials and Solar Cells, 90: 2356-2361.
  34. Wang, J.-C., Zhang, L., Fang, W.-X., Ren, J., Li, Y.-Y., Yao, H.-C., Wang, J.-S., Li, Z.-J. (2015). Enhanced Photoreduction CO2 Activity over Direct Z-Scheme α-Fe2O3/Cu2O Heterostructures under Visible Light Irradiation. ACS Appl. Mater. Interfaces, 7: 8631-8639.
  35. Zhu, X., Yang, D., Wei, W., Jiang, M., Li, L., Zhu, X., You, J., Wang, H. (2014). Magnetic copper ferrite nanoparticles/TEMPO catalyzed selective oxidation of activated alcohols to aldehydes under ligand- and base-free conditions in water. RSC Advances, 4: 64930-64935.
  36. Hori, Y., Murata, A., Takahashi, R. (1989). Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 85: 2309-2326.
  37. Schouten, K.J.P., Kwon, Y., van der Ham, C.J.M., Qin, Z., Koper, M.T.M. (2011). A new mechanism for the selectivity to C1 and C2 species in the electrochemical reduction of carbon dioxide on copper electrodes. Chemical Science, 2: 1902-1909.
  38. Hori, Y., Murata, A., Takahashi, R., Suzuki, S. (1988). Enhanced formation of ethylene and alcohols at ambient temperature and pressure in electrochemical reduction of carbon dioxide at a copper electrode. Journal of the Chemical Society, Chemical Communications, 1: 17-19.
  39. Gu, J., Wuttig, A., Krizan, J.W., Hu, Y., Detweiler, Z.M., Cava, R.J., Bocarsly, A.B. (2013). Mg-Doped CuFeO2 photocathodes for photoelectrochemical reduction of carbon dioxide. The Journal of Physical Chemistry C, 117: 12415-12422.