skip to main content

Kinetic Study of Styrene Oxidation over Titania Catalyst Supported on Sulfonated Fish Bone-derived Carbon

1Department of Chemical Education, Universitas Mulawarman, Kampus Gunung Kelua, Samarinda, 75119, East Kalimantan, Indonesia

2Chemistry Department, Universitas Mulawarman, Kampus Gunung Kelua, Samarinda, 75119, East Kalimantan, Indonesia

3Chemistry Department, Faculty Science and Technology, Universitas Islam Negeri Maulana Malik Ibrahim Malang, Jalan Gajayana 50 Malang, 65144, Indonesia

4 School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan 43900, Malaysia

5 College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China

6 Department of Chemistry, Universitas Negeri Malang, Malang 65145, Indonesia

7 Center of Advanced Materials for Renewable Energy (CAMRY), Universitas Negeri Malang, Jl. Semarang No. 5, Malang 65145, Indonesia

View all affiliations
Received: 10 Dec 2021; Revised: 22 Jan 2022; Accepted: 24 Jan 2022; Available online: 31 Jan 2022; Published: 30 Mar 2022.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2022 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image
Abstract

The kinetic evaluation of titania supported sulfonated fish bone-derived carbon (TiO2/SFBC) as a catalyst in styrene oxidation by aqueous hydrogen peroxide was carried out. The catalysts were prepared by carbonation of fishbone powder at varying temperatures 500, 600 and 700 °C, respectively for 2 h, followed by sulfonation with sulfuric acid (1M) for 24 h and impregnated by varied titania concentration 500, 1000 and 1500 µmol. The physical properties of catalysts were characterized using Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), Scanning Electron Microscope-Energy Dispersive X-Ray (SEM-EDX) and the nitrogen adsorption-desorption analysis. The catalytic activity result showed that TiO2/SFBC can be used as a potential catalyst in styrene oxidation. Worth noting that the sulfonation process has not only transformed the TiO2/FBC particulates (without sulfonation) to cuboid-shaped TiO2/SFBC (with sulfonation) but also contributed to the high selectivity of benzaldehyde. On the other hand, carbonization at different temperatures has an indistinct effect on catalytic performance due to their similar surface areas. The styrene conversion rate responded positively with the increasing amount of titania in the functionalized composites. The styrene oxidation by aqueous H2O2 unraveled the first-order reaction with the activation energy of ⁓63.5 kJ. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Fulltext View|Download
Keywords: Styrene oxidation; titania; fishbone-derived carbon; carbonization; sulfonation
Funding: Direktorat Riset dan Pengabdian Masyarakat Deputi Bidang Penguatan Riset dan Pengembangan Kementerian Riset dan Teknologi/Badan Riset dan Inovasi TA. 2021 by contract number: 590/UN17.L1/PG/2021.

Article Metrics:

  1. Aberkouks, A., Mekkaoui, A.A., Boualy, B., Houssame, S.E., Ali, M.A., Firdoussi, L.E. (2018). Selective Oxidation of Styrene to Benzaldehyde by Co-Ag Codoped ZnO Catalyst and H2O2 as Oxidant. Adv. Mater. Sci. Eng., 2018, 7. DOI: 10.1155/2018/2716435
  2. Qi, B., Lu, X.H., Zhou, D., Xia, Q.H., Tang, Z.R., Fang, S.Y., Pang, T., Dong, Y.L., (2010). Catalytic epoxidation of alkenes with 30% H2O2 over Mn2+-exchanged zeolites. J. Mol. Catal. A: Chem., 322(1–2), 73-79. DOI: 10.1016/j.molcata.2010.02.019
  3. Zhan, W., Guo, Y., Wang, Y., Guo, Y., Liu, Y.X., Wang, Y., Zhang, Z., Lu, G. (2009). Study of Higher Selectivity to Styrene Oxide in the Epoxidation of Styrene with Hydrogen Peroxide over La-Doped MCM-48 Catalyst. J. Phys. Chem. C, 113(17), 7181-7185. DOI: 10.1021/jp8101095
  4. Nurhadi, M., Kusumawardani, R., Wirawan, T., Sumari, S., Yuan, L.S., Nur, H. (2021). Catalytic Performance of TiO2–Carbon Mesoporous_Derived from Fish Bones in Styrene Oxidation with Aqueous Hydrogen Peroxide as an Oxidant. Bull. Chem. React. Eng. Catal., 16(1), 88-96. DOI: 10.9767/bcrec.16.1.9729.88-96
  5. Liu, L., He, W., Fang, Z., Yang, Z., Guo, K., Wang, Z. (2020). From Core−Shell to Yolk−Shell: Improved Catalytic Performance toward CoFe2O4@ Hollow@ Mesoporous TiO2 toward Selective Oxidation of Styrene. Ind. Eng. Chem. Res., 59(45), 19938–19951. DOI: 10.1021/acs.iecr.0c03884
  6. Sakthivel, B., Josephine, D.S.R., Sethuraman, K., Dhakshinamoorthy, A. (2018). Oxidation of styrene using TiO2-graphene oxide composite as solid heterogeneous catalyst with hydroperoxide as oxidant. Catal. Commun.,108, 41-45. DOI: 10.1016/j.catcom.2018.01.029
  7. Milovac, D., Weigand, I., Kovaˇci´c, M., Ivankovi´c, M., Ivankovi´c, H. (2018). Highly porous hydroxyapatite derived from cuttlefish bone as TiO2 catalyst support. Proces. Appl. Ceramics, 12(2), 136-142. DOI: 10.2298/PAC1802136M
  8. Puma, G.L., Bono, A., Krishnaiah, D., Collin, J.G. (2008). Preparation of titanium dioxide photocatalyst loaded onto activated carbon support using chemical vapor deposition: A review paper. J. Hazard. Mater., 157(2-3), 209-219. DOI: 10.1016/j.jhazmat.2008.01.040
  9. Ito, S., Kon, Y., Nakashima, T., Hong, D., Konno, H., Ino, D., Sato, K. (2019). Titania-Catalyzed H2O2 Thermal Oxidation of Styrenes to Aldehydes. Molecules, 24(14), 1-9. DOI: 10.3390/molecules24142520
  10. Nurhadi, M., Chandren, S., Yuan, L.S., Ho, C.S., Mahlia, T.M.I., Nur, H. (2017). Titania-Loaded Coal Char as Catalyst in Oxidation of Styrene with Aqueous Hydrogen Peroxide. Inter. J. Chem. Reactor Eng., 15(1), 45-55. DOI: 10.1515/ijcre-2016-0088
  11. Nurhadi, M. (2017). Modification of Coal Char-loaded TiO2 by Sulfonation and Alkylsilylation to Enhance Catalytic Activity in Styrene Oxidation with Hydrogen Peroxide as Oxidant. Bull. Chem. React. Eng. Catal., 12(1), 55-61. DOI: 10.9767/bcrec.12.1.501.55-61
  12. Lubis, S., Yuliati, L., Lee, S.L., Sumpono, I., Nur, H. (2012). Improvement of catalytic activity in styrene oxidation of carbon-coated titania by formation of porous carbon layer. Chem. Eng. J., 209, 468-493. DOI: 10.1016/j.cej.2012.08.041
  13. Lubis, S. (2013). Porous Carbon-Coated Titania Prepared by In-Situ Polymerization of Styrene and Its Catalytic and Photocatalytic Activities Oxidation of Alkenes. Ph.D. Dissertation, Department of Chemistry Science, Universiti Teknologi Malaysia
  14. Zhuang, J., Ma, D., Yan, Z., Liu, X., Han, X., Bao, X., Zhang, Y., Guo, X., Wang, X. (2004). Effect of acidity in TS-1 zeolites on product distribution of the styrene oxidation reaction. Appl. Catal. A-Gen., 258(1), 1-6. DOI: 10.1016/j.apcata.2003.06.002
  15. Lin, K., Pescarmona, P.P., Houthoofd, K., Liang, D., Van Tendeloo, G., Jacobs, P.A. (2009). Direct room-temperature synthesis of methyl-functionalized Ti-MCM-41 nanoparticles and their catalytic performance in epoxidation. J. Catal., 263(1), 75-82. DOI: 10.1016/j.jcat.2009.01.013
  16. Modak, A., Nandi, M., Bhaumik, A. (2012). Titanium containing periodic mesoporous organosilica as an efficient catalyst for the epoxidation of alkenes. Catal. Today, 198(1), 45-51. DOI: 10.1016/j.cattod.2012.03.074
  17. Parvulescu, V., Anastasescu, C., Constantin, C., Su, B.L. (2003). Mono (V,Nb) or bimetallic (V–Ti, Nb–Ti) ions modified MCM-41 catalysts: synthesis, characterization and catalysis in oxidation of hydrocarbons (aromatics and alcohols). Catal. Today, 78(1–4), 477-485. DOI: 10.1016/S0920-5861(02)00330-9
  18. Nurhadi, M., Efendi, J., Ling, L.S., Mahlia, T.M.I., Siong, H.C., Yuan, L.S., Chandren, S., Nur, H. (2014). Titanium Dioxide-Supported Sulfonated Low Rank Coal as Catalysts in the Oxidation of Styrene with Aqueous Hydrogen Peroxide. J Teknologi, 69(5), 71-79. DOI: 10.11113/jt.v69.3208
  19. Dwiwarno, N., Setyawanta, L.T., Saraswati, R. (2021). Sustainability Management and Planning of Coastal Areas and Small Islands to Ensure Environmental Justice for Fishermen Communities. J. Environ. Treat. Tech, 9(1), 117-121. DOI: 10.47277/JETT/9(1)121
  20. Fishery and Aquaculture Country Profiles. Indonesia. Country Profile Fact Sheets. Fisheries and Aquaculture Division (July 2014). Citing Internet sources (3 Feb 2022) URL: https://www.fao.org/fishery/en/facp/idn?lang=en
  21. Halim, D., Juanri, J. (31 August 2016). Indonesia's aquaculture industry: Key sectors for future growth. Citing Internet sources (accessed on 3 February 2022) URL https://www.ipsos.com/en/indonesias-aquaculture-industry-key-sectors-future-growth#:~:text=In%20fact%2C%20it%20is%20estimated,0.4%25%20over%20a%20similar%20period
  22. Coppola, D., Lauritano, C., Esposito, F.P., Riccio, G., Rizzo, C., Pascale, D. (2021). Fish waste: From problem to valuable resource. Marine Drugs, 19, 116. DOI: 10.3390/md19020116
  23. Chinglenthoiba, C., Das, A., Vandana, S. (2020). Enhanced biodiesel production from waste cooking palm oil, with NaOH-loaded Calcined fish bones as the catalyst. Environ. Sci. Pollut. Res., 27(13), 15925-15930. DOI: 10.1007/s11356-020-08249-7
  24. Manaf, I.S.A., Yi, C.J., Ab. Rahim, M.H., Maniam, G.P. (2019). Utilization of waste fish bone as catalyst in transesterification of RBD palm oil. Mater. Today: Proceedings, 19, 1294–1302. DOI: 10.1016/j.matpr.2019.11.140
  25. Jeremiah, P.A., Jalil, A.A., Olutoye, M.A. (2019). Heterogeneous catalyst application in biodiesel production: Needs to focus on cost effective and reusable catalysts. IOP Conf. Series: Mater. Sci. Eng., 808, 012013. DOI: 10.1088/1757-899X/808/1/012013
  26. Chakraborty, R., RoyChowdhury, D. (2013). Fish bone derived natural hydroxyapatite-supported copper acid catalyst: Taguchi optimization of semibatch oleic acid esterification. Chem. Eng. J., 215–216, 491–499. DOI: 10.1016/j.cej.2012.11.064
  27. Patel, S., Han, J., Qiu, W., Gao, W. (2015). Synthesis and characterisation of mesoporous bone char obtained by pyrolysis of animal bones, for environmental application. J. Environ. Chem. Eng., 3, 2368-2377. DOI: 10.1016/j.jece.2015.07.031
  28. Yin, T., Park, J.W., Xiong, S. (2015). Physicochemical properties of nano fish bone prepared by wet media milling LWT - Food Sci. Technol., 64(1), 367-373. DOI: 10.1016/j.lwt.2015.06.007
  29. Zayed, E.M., Sokker, H.H., Albishri, H.M., Farag, A.M. (2013). Potential use of novel modified fishbone for anchoring hazardous metal ions from their solutions. Ecol. Eng., 61, 390-393. DOI: 10.1016/j.ecoleng.2013.09.010
  30. Szpak, P. (2011). Fish bone chemistry and ultrastructure: implications for taphonomy and stable isotope analysis. J. Archaeol. Sci., 38(12), 3358-3372. DOI: 10.1016/j.jas.2011.07.022
  31. Boutinguiza, M., Poua, J., Comesaña, R., Lusquiños, F., Carlos, A.d., Leóna, B. (2012). Biological hydroxyapatite obtained from fish bones. Mater. Sci. Eng.: C, 32(3), 478-486. DOI: 10.1016/j.msec.2011.11.021
  32. Poh, N.E., Nur, H., Muhid, M.N.M., Hamdan, H. (2006). Sulphated AlMCM-41: Mesoporous solid Brønsted acid catalyst for dibenzoylation of biphenyl. Catal. Today, 114(2-3), 257-262. DOI: 10.1016/j.cattod.2006.01.010
  33. Peng, L., Philippaerts, A., Ke, X., Van Noyen, J., De Clippel, F., Van Tendeloo, G., Jacobs, P.A., Sels, B.F. (2010). Preparation of sulfonated ordered mesoporous carbon and its use for the esterification of fatty acids. Catal. Today, 50(1–2), 140-146. DOI: 10.1016/j.cattod.2009.07.066
  34. Duprey, E., Beaunier, P., Springuel-Huet, M.A., Bozon-Verduraz, F., Fraissard, J., Manoli, J.M., Brégeault, J.M. (1997). Characterization of Catalysts Based on Titanium Silicalite, TS-1, by Physicochemical Techniques. J. Catal., 165(1), 22-32. DOI: 10.1006/jcat.1997.1462
  35. Liu, C., Huang, J., Sun, D., Zhou, Y., Jing, X., Du, M., Wang, H., Li, Q. (2013). Anatase type extra-framework titanium in TS-1: A vital factor influencing the catalytic activity toward styrene epoxidation. Appl. Catal., A-Gen, 459, 1-7. DOI: 10.1016/j.apcata.2013.03.013
  36. Nur, H. (2006). Modification of titanium surface species of titania by attachment of silica nanoparticles. Mater. Sci Eng. B, 133, 49-54. DOI: 10.1016/j.mseb.2006.05.003
  37. Tryba, B., Morawski, A.W., Inagaki, M. (2003). Application of TiO2-mounted activated carbon to the removal of phenol from water. Appl. Catal. B: Environ., 41, 427-433. DOI: 10.1016/S0926-3373(02)00173-X
  38. Padikkaparambil, S., Narayanan, B., Yaakob, Z., Viswanathan, S., Tasirin, S.M. (2013). Au/TiO2 Reusable Photocatalysts for Dye Degradation. Int. J. Photoenergy, 2013, 1-10. DOI: 10.1155/2013/752605
  39. Tang, B., Lu, X.-H., Zhou, D., Lei, J., Niu, Z.-H., Fan, J., Xia, Q-H. (2012). Highly efficient epoxidation of styrene and α-pinene with air over Co2+-exchanged ZSM-5 and Beta zeolites. Catal. Commun., 21, 68-71. DOI: 10.1016/j.catcom.2012.01.029
  40. Pei, J., Han, X., Lu, Y. (2015). Performance and kinetics of catalytic oxidation of formaldehyde over copper manganese oxide catalyst. Build. Environ., 84, 134-141. DOI: 10.1016/j.buildenv.2014.11.002
  41. Tseng, T.K., Chu, H. (2001). The kinetics of catalytic incineration of styrene over a MnO/Fe2O3 catalyst. Sci. Total Environ., 275(1-3), 83-93. DOI: 10.1016/s0048-9697(00)00856-1
  42. Laidler, K.J. (1988). Chemical Kinetics. Second Edition. New Delhi: Tata McGraw-Hill Publishing Company Ltd
  43. Alimardanov, H.M., Veliyeva, F.M., Garibov, N.I., Musayeva, E.S. (2020). Kinetic relationships of liquid-phase oxidation of styrene with hydrogen peroxide in the presence of polyoxotungstate modified with cerium cations. Russian J. Appl. Chem., 93, 729-740. DOI: 10.1134/S1070427220050146

Last update:

No citation recorded.

Last update:

No citation recorded.