Structural Investigation: Anionic Polymerization of Acrylamide under Microwave Irradiation using Maghnite-Na+ Clay (Algerien MMT) as Initiator

DOI: https://doi.org/10.9767/bcrec.13.2.1308.262-274
Copyright (c) 2018 Bulletin of Chemical Reaction Engineering & Catalysis
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Cover Image

Article Metrics: (Click on the Metric tab below to see the detail)

Article Info
Submitted: 24-06-2017
Published: 11-06-2018
Section: Original Research Articles
Fulltext PDF Tell your colleagues Email the author

Intercalation of acrylamide into interlayer spaces of natural  montmorillonite called maghnite (Algerian MMT) by the free solvent polymerization technique under micowave irradiation was studied. The transformation was carried out with using both the raw (Maghnite-Na fin) and treated clay (Maghnite-Na+ fin) in aqueous sodium hydroxide NaOH solution (1 M). It was shown that no initial modification of the layered mineral (by ion-exchange with Na+ cations or organophilization) is needed for the successful introduction of anionic hydrogels into the interlayer gallery. The goal of the present study was to synthesis anionic polyacrylamide/Maghnite composite with similar composition and structure to that synthesized of other catalyst. The Maghnite catalyst has a significant role in the industrial scale. In fact, the use of Maghnite is preferred for its many advantages: a very low purchase price compared to other catalysts, the easy removal of the reaction mixture. The anionic sodium-clay polyacrylamide material exhibited a tendency to the formation of exfoliated structure. The synthesized hydrogels, as monitored by the swelling behavior, were characterized by Fourier transform infrared and 1HNMR analysis. Copyright © 2018 BCREC Group. All rights reserved

Received: 24th June 2017; Revised: 13rd December 2017; Accepted: 14th December 2017; Available online: 11st June 2018; Published regularly: 1st August 2018

How to Cite: Rahmouni, R., Belbachir, M., Ayat, M. (2018). Structural Investigation: Anionic Polymerization of Acrylamide under Microwave Irradiation using Maghnite-Na+ Clay (Algerien MMT) as Initiator. Bulletin of Chemical Reaction Engineering & Catalysis, 13 (2): 262-274 (doi:10.9767/bcrec.13.2.1308.262-274)

 

Keywords

green catalysis; Anionic polyacrylamide; hydrogel; Maghnite-H+; Microwave irradiation

  1. Abdelkader Rahmouni 
    Laboratory of Polymer Chemistry, Department of Chemistry, Faculty of Sciences, Oran1, University Ahmed Benbella, BP 1524.El M’nouar. 31000 Oran, Algeria
    department of chemistry
  2. Mohammed Belbachir 
    Laboratory of Polymer Chemistry, Department of Chemistry, Faculty of Sciences, Oran1, University Ahmed Benbella, BP 1524.El M’nouar. 31000 Oran, Algeria
    chemistry
  3. Molkheir Ayat 
    Laboratory of Polymer Chemistry, Department of Chemistry, Faculty of Sciences, Oran1, University Ahmed Benbella, BP 1524.El M’nouar. 31000 Oran, Algeria
    chemistry
  1. Tierney, G.P., Lidstrom, P. (2004). Microwave Assisted Organic Chemistry, Taylor & Francis Group.
  2. Song, B.K., Cho, M.S., Yoon, K.J. (2003). Dispersion polymerization of acrylamide with quaternary ammonium cationic comonomer in aqueous solution. J. Appl. Polym. Sci., 87: 1101-1108.
  3. Velmathi, S., Nagahata, R., Sugiyama, K., J.I. (2005). Takeuchi, Macromol. Rapid Commun, 26: 1163-1167
  4. Travas-Sejdic, J., Easteal, A. (2000). Study of free-radical copolymerization of acrylamide with 2-acrylamido-2-methyl-1-propane sulfonic acid, Journal of Applied Polymer Science, 75 : 619-628.
  5. Zhu, J., Zhu, X., Zhang, Z., Cheng, Z. (2006). Reversible addition fragmentation chain transfer polymerization of glycidyl methacrylate with 2‐cyanoprop‐2‐yl 1‐dithionaphthalate as a chain‐transfer agent. Journal of Polymer Science Part A: Polymer Chemistry. 42: 2558-2565
  6. Sabhapondit, A., Borthakur, A., Haque, I. (2003). Characterization of acrylamide polymers for enhanced oil recovery, Journal of Applied Polymer Science, 87: 1869-1878.
  7. Wang, W., Liu, L.Y., Huang, Z.H. (2005). Study of photo-initiated dispersion polymerization of acrylamide by using graft copolymer of acrylic acid and nonylphenoxypoly (ethylene oxide) macromonomers as dispersant. Acta Polymerica Sinica. 3: 320-326.
  8. Rabiee, A., Zeynali, M.E., Baharvand, H. (2005). Synthesis of high molecular weight partially hydrolyzed polyacrylamide and investigation on its properties, Iranian Polymer Journal,14: 603-608.
  9. El-Zawawy, W.K., Ibrahim, M.M. (2012). Preparation and characterization of novel polymer hydrogel from industrial waste and copolymerization of poly(vinyl alcohol) and polyacrylamide. J. Appl. Polym. Sci. 124: 4362-4370.
  10. Kabiri, K., Omidian, H., Zohuriaan-Mehr, M.J., Doroudiani, S. (2011). Super-absorbent hydrogel composites and nanocomposites, Polym. Composit. 32: 277-289.
  11. Chen, M., Wang, L.Y., Han, J.T., Zhang, J.Y., Li, Z.Y., Qian, D.J. (2006) Preparation and study of polyacryamide-stabilized silver nanoparticles through a one-pot process, J. Phys. Chem. B ,110: 11224-11231.
  12. Dragan, S., Mihai, M., Ghimici, L. (2003). Viscometric study of poly(sodium 2-acrylamido-2-methylpropanesulfonate) and two random copolymers, European Polymer Journal, 39: 1847-1854.
  13. Rosa, F., Bordado, J., Casquilho, M. (2003). Hydrosoluble copolymers of acrylamide-(2-acrylamido-2-methylpropanesulfonic acid). Synthesis and characterization by spectroscopy and viscometry, Journal of Applied Polymer Science, 87: 192-198.
  14. Ferfera-Harrar, H., Aiouaz, N., Dairi, N., Hadj-Hamou, A.S. (2014). Preparation of chitosan-g-poly(acrylamide)/montmorillonite superabsorbent polymer composites: studies on swelling, thermal, and antibacterial properties. J. Appl. Polym. Sci., 131: 9747-9761.
  15. Belbachir, M., Yahiaoui, A., Hachemaoui, A. (2003). An Acid Exchanged Montmorillonite Clay-Catalyzed Synthesis of Polyepichlorhydrin International, Journal of Molecular Sciences, 4: 548-561.
  16. Belbachir, M., Bensaoula, A. (2006). Composition and method for catalysis using bentonites, US Patent, No. 7, 094-823 B2.
  17. Belbachir, M., Yahiaoui, A., Hachemaoui, A. (2003). Cationic Polymerization of 1,2-Epoxypropane by an Acid Exchanged Montmorillonite Clay in the Presence of Ethylene Glycol. Int. J. Mol. Sci. 4: 572-585.
  18. Rahmouni, A., Harrane, A., Belbachir, M. (2013). Maghnite-H+, an eco-catalyst layered (Algerian Montmorillonite) for synthesis of polyaniline/Maghnite clay nano-composites. Int. J. Chem. Mater. Sci., 1: 175-181.
  19. Shields, S.P., Richards, V.N., Buhro, W.E. (2010). Nucleation control of size and dispersity in aggregative nanoparticle growth a study of the coarsening kinetics of thiolate-capped gold nanocrystals. Chem. Mater., 22: 3212-3225.
  20. Zhao, Q., Sun, J., Lin, Y., Zhou, Q. (2010). Superabsorbency, study of the properties of hydrolyzed polyacrylamide hydrogels with various pore structures and rapid pH-sensitivities, React. Funct. Polym., 70: 602-609.
  21. Singh, V., Tewari, A., Tripathi, D.N., Sanghi, R. (2004). Microwave assisted synthesis of guar-g-polyacrylamide, Carbohydr. Polym., 58: 1-6.
  22. Goldberg, S., Glaubig, R.A. (1987). Effect of saturating cation, pH, and aluminum and iron oxide on the flocculation of kaolinite and montmorillonite, Clays and Clay Minerals 35: 220-227.
  23. Green, S.V., Stott, D.E., Norton, L.D., Graveel, J.G. (2000). Polyacrylamide molecular weight and charge effects on infiltration under simulated rainfall. Soil Science Society of America Journal 64: 1786-1791.
  24. Helalia, A.M., Letey, J. (1988). Polymer type and water quality effects on soil dispersion. Soil Science Society of America Journal 52: 243-246.
  25. Laird, D.A. (1997). Bonding between polyacrylamide and clay mineral surfaces. Soil Science 162: 826-832.
  26. Lei, T.W., Tang, Z.J., Zhang, Q.W., Zhao, J. (2003). Effects of polyacrylamide application on infiltration and soil erosion under simulated rainfalls: II erosion control. Acta Pedologica Sinica, 40: 401-406.
  27. Shainberg, I., Warrington, D.N., Rengasamy, P. (1990) Water quality and PAM interactions in reducing surface sealing. Soil Science 149: 301-307.
  28. Zolfaghari, R., Katbab, A.A., Nabavizadeh, J., Tabasi, R.Y., Nejad, M.H. (2006). Preparation and characterization of nanocomposite hydrogels based on polyacrylamide for enhanced oil recovery applications, J. Appl. Polym. Sci. 100(3): 2096-2103.
  29. Smets, G., Hesbain, A.M. (1956). Hydrolysis of polyacrylamide and acrylic acid-acrylamide copolymers, Journal of Polymer Science 40: 217-226.
  30. Luo, J., Bu, R., Zhu, H., Wang, P., Liu, Y. (2004). Property and application of comb-shape polyacrylamide, Acta Pet. Sin. 25(2): 65-68.
  31. Feng, Y.J., Billon, L., Grassl, B., Bastiat, G., Borisov, O., Francois, J. (2005). Hydrophobically associating polyacrylamides and their partially hydrolyzed derivatives prepared by post-modification. 2. Properties of non-hydrolyzed polymers in pure water and brine, Polymer 46(22): 9283-9295.
  32. Martin, D., Ighigeanu, D.I., Mateescu, E.N., Craciun, G.D., Calinescu, I.I., Iovu, H.M., Marin, G.G. (2004). Combined microwave and accelerated electron beam irradiation facilities for applied physics and chemistry, IEEE Trans. Ind. Appl., 40: 41-52.
  33. Caulfield, M.J., Hao, X., Qiao, G.G., Solomon, D.H. (2003). Degradation on polyacrylamides. Part II. Polyacrylamide gels, Polymer, 44: 3817-3826.
  34. Chang, Y., McCormick, C.L. (1993). Effect of the distribution of the hydrophobic cationic monomer dimethyldodecyl (2-acrylamido-ethyl) ammonium bromide on the solution behavior of associating acrylamide copolymers. Macromolecules, 26: 6121-6126.
  35. Zhao, Y.Z., Zhou, J.Z., Xu, X.H., Liu, W.B., Zhang, J.Y., Fan, M.H., Wang, J.B. (2009) .Synthesis and characterization of a series of modified polyacrylamide, Colloid Polym. Sci. 287(2): 237-241.
  36. Abdolbaghi, S., Pourmahdian, S., Saadat, Y. (2014). Preparation of poly (acrylamide)/ nanoclay organic-inorganic hybrid nanoparticles with average size of∼250 nm via inverse Pickering emulsion polymerization, Colloid and Polymer Science 292: 1091-1097.
  37. Aguilar, J., Moscoso, F., Rios, O., Ceja, I., Sánchez, J., Bautista, F., Puig, J., Fernández, V. (2014). Swelling Behavior of Poly (N-isopropylacrylamide) Nanogels with Narrow Size Distribution Made by Semi-continuous Inverse Heterophase Polymerization, Journal of Macromolecular Science, Part A, 51: 412-419.
  38. Reddy, K.R., Lee, K.P. (2008). Facile synthesis of conducting polymer metal hybrid nanocomposite by in situ chemical oxidative polymerization with negatively charged metal nanoparticles, Mater. Lett. 62: 1815-1818.
  39. Zhou, C., Wu, Q. (2011). A novel polyacrylamide nanocomposite hydrogel reinforced with natural chitosan nanofibers, Colloid Surf. B, 84: 155-162.
  40. Capek, I. (2014). On photoinduced polymerization of acrylamide, Des Monomers Polym. 17: 356-363.
  41. Mishra, A., Yadav, A., Pal, S., Singh, A. (2006). Biodegradable graft copolymers of fenugreek mucilage and polyacrylamide: a renewable reservoir to biomaterials. Carbohydr. Polym., 65: 58-63.
  42. Fortenberry, D.I., Pojman, J.A. (2000). Solvent-free synthesis of polyacrylamide by frontal polymerization, J. Polym. Sci. A, 38(7): 1129-1135.
  43. Zhao, Y.Z., Zhou, J.Z., Xu, X.H., Liu, W.B., Zhang, J.Y., Fan, M.H., Wang, J.B. (2009). Synthesis and characterization of a series of modified polyacrylamide, Colloid Polym. Sci. 287(2): 237-241.
  44. Mishra, A., Rajani, S., Agarwal, M., Dubey, R.P. (2002). Psyllium-g-polyacrylamide: synthesis and characterization, Polym. Bull., 48: 439-444.
  45. Hatada, K., Ute, K., Tanaka, K., Kitayama, T., Okamoto, Y. (1987) Mechanism of polymerization of MMA by grignard reagents and preparation of high isotactic PMMA with narrow molecular weight distribution, in Recent Advances in Anionic Polymerization (eds T. Hogen-Esch and J. Smid), Elsevier, New York, p. 195.
  46. Zhao, Y., Zhou, J., Xu, X., Liu, W. (2009). Synthesis and characterization of a series of modified polyacrylamide, Colloid Polym. Sci. 287: 237-241.
  47. Luo, J., Bu, R., Zhu, H., Wang, P., Liu, Y. (2004). Property and application of comb-shape polyacrylamide, Acta Pet. Sin. 25(2): 65-68.
  48. El-Sayed, M., Sorour, M., Abd-El-Moneem, N., Talaat, H., Shalaan, H., El-Marsafy, N. (2011). Synthesis and properties of natural polymers-grafted-acrylamide, World Appl. Sci. J., 13: 360-368.
  49. Capek, I. (2016). Photopolymerization of acrylamide in the very low monomer concentration range, Des Monomers Polym. 19: 290-296.
  50. Truong, N.D., Galin, J.C., Francois, J., Pham, Q.T. (1986). Microstructure of acrylamide acrylic-acid copolymers. 1. As obtained by alkaline-hydrolysis, Polymer, 27(3): 459-466.
  51. Cho, M.S., Yoon, K.J., Song, B.K. (2002). Dispersion polymerization of crylamide in aqueous solution of ammonium sulfate: Synthesis and characterization. Journal of Applied Polymer Science, 83: 1397-1405.
  52. Gemeinhart, R.A., Park, H., Park, K. (2000). Pore Structure of Superporous Hydrogels, Polymers for Advanced Technologies, 11: 617-625.
  53. Mallakpour, S.E., Hajipour, A., Faghihi, K., Foroughifar, N., Bagheri, J. (2001). Microwave assisted rapid synthesis of novel optically active poly (amide-imide)s based onN-trimellitylimido-L-leucine diacid chloride and hydantoin derivatives, J. Appl. Polym. Sci., 80: 2416-2421
  54. Vogel, B.M., Mallapragada, S.K., Narasimhan, B. (2004). Rapid Synthesis of Poly-anhydrides by Microwave Polymerization. Macromol. Rapid Commun. 25: 330-333.
  55. Mallakpour, S., Hajipour, A.R., Habibi, S. (2001). Facile synthesis of new optically active poly(amide imide)s derived from N,N'-(pyromellitoyl)-bis-L-leucine diacid chloride and aromatic diamines under microwave irradiation. Eur. Polym. J., 37: 2435-2442.