Structural Investigation: Anionic Polymerization of Acrylamide under Microwave Irradiation using Maghnite-Na+ Clay (Algerien MMT) as Initiator

*Abdelkader Rahmouni  -  Laboratory of Polymer Chemistry, Department of Chemistry, Faculty of Sciences, Oran1, , Algeria
Mohammed Belbachir  -  Laboratory of Polymer Chemistry, Department of Chemistry, Faculty of Sciences, Oran1, , Algeria
Molkheir Ayat  -  Laboratory of Polymer Chemistry, Department of Chemistry, Faculty of Sciences, Oran1, , Algeria
Received: 24 Jun 2017; Revised: 13 Dec 2017; Accepted: 14 Dec 2017; Published: 1 Aug 2018; Available online: 11 Jun 2018.
Open Access Copyright (c) 2018 Bulletin of Chemical Reaction Engineering & Catalysis
License URL: http://creativecommons.org/licenses/by-sa/4.0

Citation Format:
Cover Image
Abstract

Intercalation of acrylamide into interlayer spaces of natural  montmorillonite called maghnite (Algerian MMT) by the free solvent polymerization technique under micowave irradiation was studied. The transformation was carried out with using both the raw (Maghnite-Na fin) and treated clay (Maghnite-Na+ fin) in aqueous sodium hydroxide NaOH solution (1 M). It was shown that no initial modification of the layered mineral (by ion-exchange with Na+ cations or organophilization) is needed for the successful introduction of anionic hydrogels into the interlayer gallery. The goal of the present study was to synthesis anionic polyacrylamide/Maghnite composite with similar composition and structure to that synthesized of other catalyst. The Maghnite catalyst has a significant role in the industrial scale. In fact, the use of Maghnite is preferred for its many advantages: a very low purchase price compared to other catalysts, the easy removal of the reaction mixture. The anionic sodium-clay polyacrylamide material exhibited a tendency to the formation of exfoliated structure. The synthesized hydrogels, as monitored by the swelling behavior, were characterized by Fourier transform infrared and 1HNMR analysis. Copyright © 2018 BCREC Group. All rights reserved

Received: 24th June 2017; Revised: 13rd December 2017; Accepted: 14th December 2017; Available online: 11st June 2018; Published regularly: 1st August 2018

How to Cite: Rahmouni, R., Belbachir, M., Ayat, M. (2018). Structural Investigation: Anionic Polymerization of Acrylamide under Microwave Irradiation using Maghnite-Na+ Clay (Algerien MMT) as Initiator. Bulletin of Chemical Reaction Engineering & Catalysis, 13 (2): 262-274 (doi:10.9767/bcrec.13.2.1308.262-274)

 

Keywords: green catalysis; Anionic polyacrylamide; hydrogel; Maghnite-H+; Microwave irradiation

Article Metrics:

  1. Tierney, G.P., Lidstrom, P. (2004). Microwave Assisted Organic Chemistry, Taylor & Francis Group
  2. Song, B.K., Cho, M.S., Yoon, K.J. (2003). Dispersion polymerization of acrylamide with quaternary ammonium cationic comonomer in aqueous solution. J. Appl. Polym. Sci., 87: 1101-1108
  3. Velmathi, S., Nagahata, R., Sugiyama, K., J.I. (2005). Takeuchi, Macromol. Rapid Commun, 26: 1163-1167
  4. Travas-Sejdic, J., Easteal, A. (2000). Study of free-radical copolymerization of acrylamide with 2-acrylamido-2-methyl-1-propane sulfonic acid, Journal of Applied Polymer Science, 75 : 619-628
  5. Zhu, J., Zhu, X., Zhang, Z., Cheng, Z. (2006). Reversible addition fragmentation chain transfer polymerization of glycidyl methacrylate with 2‐cyanoprop‐2‐yl 1‐dithionaphthalate as a chain‐transfer agent. Journal of Polymer Science Part A: Polymer Chemistry. 42: 2558-2565
  6. Sabhapondit, A., Borthakur, A., Haque, I. (2003). Characterization of acrylamide polymers for enhanced oil recovery, Journal of Applied Polymer Science, 87: 1869-1878
  7. Wang, W., Liu, L.Y., Huang, Z.H. (2005). Study of photo-initiated dispersion polymerization of acrylamide by using graft copolymer of acrylic acid and nonylphenoxypoly (ethylene oxide) macromonomers as dispersant. Acta Polymerica Sinica. 3: 320-326
  8. Rabiee, A., Zeynali, M.E., Baharvand, H. (2005). Synthesis of high molecular weight partially hydrolyzed polyacrylamide and investigation on its properties, Iranian Polymer Journal,14: 603-608
  9. El-Zawawy, W.K., Ibrahim, M.M. (2012). Preparation and characterization of novel polymer hydrogel from industrial waste and copolymerization of poly(vinyl alcohol) and polyacrylamide. J. Appl. Polym. Sci. 124: 4362-4370
  10. Kabiri, K., Omidian, H., Zohuriaan-Mehr, M.J., Doroudiani, S. (2011). Super-absorbent hydrogel composites and nanocomposites, Polym. Composit. 32: 277-289
  11. Chen, M., Wang, L.Y., Han, J.T., Zhang, J.Y., Li, Z.Y., Qian, D.J. (2006) Preparation and study of polyacryamide-stabilized silver nanoparticles through a one-pot process, J. Phys. Chem. B ,110: 11224-11231
  12. Dragan, S., Mihai, M., Ghimici, L. (2003). Viscometric study of poly(sodium 2-acrylamido-2-methylpropanesulfonate) and two random copolymers, European Polymer Journal, 39: 1847-1854
  13. Rosa, F., Bordado, J., Casquilho, M. (2003). Hydrosoluble copolymers of acrylamide-(2-acrylamido-2-methylpropanesulfonic acid). Synthesis and characterization by spectroscopy and viscometry, Journal of Applied Polymer Science, 87: 192-198
  14. Ferfera-Harrar, H., Aiouaz, N., Dairi, N., Hadj-Hamou, A.S. (2014). Preparation of chitosan-g-poly(acrylamide)/montmorillonite superabsorbent polymer composites: studies on swelling, thermal, and antibacterial properties. J. Appl. Polym. Sci., 131: 9747-9761
  15. Belbachir, M., Yahiaoui, A., Hachemaoui, A. (2003). An Acid Exchanged Montmorillonite Clay-Catalyzed Synthesis of Polyepichlorhydrin International, Journal of Molecular Sciences, 4: 548-561
  16. Belbachir, M., Bensaoula, A. (2006). Composition and method for catalysis using bentonites, US Patent, No. 7, 094-823 B2
  17. Belbachir, M., Yahiaoui, A., Hachemaoui, A. (2003). Cationic Polymerization of 1,2-Epoxypropane by an Acid Exchanged Montmorillonite Clay in the Presence of Ethylene Glycol. Int. J. Mol. Sci. 4: 572-585
  18. Rahmouni, A., Harrane, A., Belbachir, M. (2013). Maghnite-H+, an eco-catalyst layered (Algerian Montmorillonite) for synthesis of polyaniline/Maghnite clay nano-composites. Int. J. Chem. Mater. Sci., 1: 175-181
  19. Shields, S.P., Richards, V.N., Buhro, W.E. (2010). Nucleation control of size and dispersity in aggregative nanoparticle growth a study of the coarsening kinetics of thiolate-capped gold nanocrystals. Chem. Mater., 22: 3212-3225
  20. Zhao, Q., Sun, J., Lin, Y., Zhou, Q. (2010). Superabsorbency, study of the properties of hydrolyzed polyacrylamide hydrogels with various pore structures and rapid pH-sensitivities, React. Funct. Polym., 70: 602-609
  21. Singh, V., Tewari, A., Tripathi, D.N., Sanghi, R. (2004). Microwave assisted synthesis of guar-g-polyacrylamide, Carbohydr. Polym., 58: 1-6
  22. Goldberg, S., Glaubig, R.A. (1987). Effect of saturating cation, pH, and aluminum and iron oxide on the flocculation of kaolinite and montmorillonite, Clays and Clay Minerals 35: 220-227
  23. Green, S.V., Stott, D.E., Norton, L.D., Graveel, J.G. (2000). Polyacrylamide molecular weight and charge effects on infiltration under simulated rainfall. Soil Science Society of America Journal 64: 1786-1791
  24. Helalia, A.M., Letey, J. (1988). Polymer type and water quality effects on soil dispersion. Soil Science Society of America Journal 52: 243-246
  25. Laird, D.A. (1997). Bonding between polyacrylamide and clay mineral surfaces. Soil Science 162: 826-832
  26. Lei, T.W., Tang, Z.J., Zhang, Q.W., Zhao, J. (2003). Effects of polyacrylamide application on infiltration and soil erosion under simulated rainfalls: II erosion control. Acta Pedologica Sinica, 40: 401-406
  27. Shainberg, I., Warrington, D.N., Rengasamy, P. (1990) Water quality and PAM interactions in reducing surface sealing. Soil Science 149: 301-307
  28. Zolfaghari, R., Katbab, A.A., Nabavizadeh, J., Tabasi, R.Y., Nejad, M.H. (2006). Preparation and characterization of nanocomposite hydrogels based on polyacrylamide for enhanced oil recovery applications, J. Appl. Polym. Sci. 100(3): 2096-2103
  29. Smets, G., Hesbain, A.M. (1956). Hydrolysis of polyacrylamide and acrylic acid-acrylamide copolymers, Journal of Polymer Science 40: 217-226
  30. Luo, J., Bu, R., Zhu, H., Wang, P., Liu, Y. (2004). Property and application of comb-shape polyacrylamide, Acta Pet. Sin. 25(2): 65-68
  31. Feng, Y.J., Billon, L., Grassl, B., Bastiat, G., Borisov, O., Francois, J. (2005). Hydrophobically associating polyacrylamides and their partially hydrolyzed derivatives prepared by post-modification. 2. Properties of non-hydrolyzed polymers in pure water and brine, Polymer 46(22): 9283-9295
  32. Martin, D., Ighigeanu, D.I., Mateescu, E.N., Craciun, G.D., Calinescu, I.I., Iovu, H.M., Marin, G.G. (2004). Combined microwave and accelerated electron beam irradiation facilities for applied physics and chemistry, IEEE Trans. Ind. Appl., 40: 41-52
  33. Caulfield, M.J., Hao, X., Qiao, G.G., Solomon, D.H. (2003). Degradation on polyacrylamides. Part II. Polyacrylamide gels, Polymer, 44: 3817-3826
  34. Chang, Y., McCormick, C.L. (1993). Effect of the distribution of the hydrophobic cationic monomer dimethyldodecyl (2-acrylamido-ethyl) ammonium bromide on the solution behavior of associating acrylamide copolymers. Macromolecules, 26: 6121-6126
  35. Zhao, Y.Z., Zhou, J.Z., Xu, X.H., Liu, W.B., Zhang, J.Y., Fan, M.H., Wang, J.B. (2009) .Synthesis and characterization of a series of modified polyacrylamide, Colloid Polym. Sci. 287(2): 237-241
  36. Abdolbaghi, S., Pourmahdian, S., Saadat, Y. (2014). Preparation of poly (acrylamide)/ nanoclay organic-inorganic hybrid nanoparticles with average size of∼250 nm via inverse Pickering emulsion polymerization, Colloid and Polymer Science 292: 1091-1097
  37. Aguilar, J., Moscoso, F., Rios, O., Ceja, I., Sánchez, J., Bautista, F., Puig, J., Fernández, V. (2014). Swelling Behavior of Poly (N-isopropylacrylamide) Nanogels with Narrow Size Distribution Made by Semi-continuous Inverse Heterophase Polymerization, Journal of Macromolecular Science, Part A, 51: 412-419
  38. Reddy, K.R., Lee, K.P. (2008). Facile synthesis of conducting polymer metal hybrid nanocomposite by in situ chemical oxidative polymerization with negatively charged metal nanoparticles, Mater. Lett. 62: 1815-1818
  39. Zhou, C., Wu, Q. (2011). A novel polyacrylamide nanocomposite hydrogel reinforced with natural chitosan nanofibers, Colloid Surf. B, 84: 155-162
  40. Capek, I. (2014). On photoinduced polymerization of acrylamide, Des Monomers Polym. 17: 356-363
  41. Mishra, A., Yadav, A., Pal, S., Singh, A. (2006). Biodegradable graft copolymers of fenugreek mucilage and polyacrylamide: a renewable reservoir to biomaterials. Carbohydr. Polym., 65: 58-63
  42. Fortenberry, D.I., Pojman, J.A. (2000). Solvent-free synthesis of polyacrylamide by frontal polymerization, J. Polym. Sci. A, 38(7): 1129-1135
  43. Zhao, Y.Z., Zhou, J.Z., Xu, X.H., Liu, W.B., Zhang, J.Y., Fan, M.H., Wang, J.B. (2009). Synthesis and characterization of a series of modified polyacrylamide, Colloid Polym. Sci. 287(2): 237-241
  44. Mishra, A., Rajani, S., Agarwal, M., Dubey, R.P. (2002). Psyllium-g-polyacrylamide: synthesis and characterization, Polym. Bull., 48: 439-444
  45. Hatada, K., Ute, K., Tanaka, K., Kitayama, T., Okamoto, Y. (1987) Mechanism of polymerization of MMA by grignard reagents and preparation of high isotactic PMMA with narrow molecular weight distribution, in Recent Advances in Anionic Polymerization (eds T. Hogen-Esch and J. Smid), Elsevier, New York, p. 195
  46. Zhao, Y., Zhou, J., Xu, X., Liu, W. (2009). Synthesis and characterization of a series of modified polyacrylamide, Colloid Polym. Sci. 287: 237-241
  47. Luo, J., Bu, R., Zhu, H., Wang, P., Liu, Y. (2004). Property and application of comb-shape polyacrylamide, Acta Pet. Sin. 25(2): 65-68
  48. El-Sayed, M., Sorour, M., Abd-El-Moneem, N., Talaat, H., Shalaan, H., El-Marsafy, N. (2011). Synthesis and properties of natural polymers-grafted-acrylamide, World Appl. Sci. J., 13: 360-368
  49. Capek, I. (2016). Photopolymerization of acrylamide in the very low monomer concentration range, Des Monomers Polym. 19: 290-296
  50. Truong, N.D., Galin, J.C., Francois, J., Pham, Q.T. (1986). Microstructure of acrylamide acrylic-acid copolymers. 1. As obtained by alkaline-hydrolysis, Polymer, 27(3): 459-466
  51. Cho, M.S., Yoon, K.J., Song, B.K. (2002). Dispersion polymerization of crylamide in aqueous solution of ammonium sulfate: Synthesis and characterization. Journal of Applied Polymer Science, 83: 1397-1405
  52. Gemeinhart, R.A., Park, H., Park, K. (2000). Pore Structure of Superporous Hydrogels, Polymers for Advanced Technologies, 11: 617-625
  53. Mallakpour, S.E., Hajipour, A., Faghihi, K., Foroughifar, N., Bagheri, J. (2001). Microwave assisted rapid synthesis of novel optically active poly (amide-imide)s based onN-trimellitylimido-L-leucine diacid chloride and hydantoin derivatives, J. Appl. Polym. Sci., 80: 2416-2421
  54. Vogel, B.M., Mallapragada, S.K., Narasimhan, B. (2004). Rapid Synthesis of Poly-anhydrides by Microwave Polymerization. Macromol. Rapid Commun. 25: 330-333
  55. Mallakpour, S., Hajipour, A.R., Habibi, S. (2001). Facile synthesis of new optically active poly(amide imide)s derived from N,N'-(pyromellitoyl)-bis-L-leucine diacid chloride and aromatic diamines under microwave irradiation. Eur. Polym. J., 37: 2435-2442

Last update: 2021-04-18 06:33:19

No citation recorded.

Last update: 2021-04-18 06:33:20

  1. Homopolymerization of methacrylamide by anionic process under effect of Maghnite-Na+ (Algerian MMT)

    Derkaoui S.. Journal of Organometallic Chemistry, 127 , 2019. doi: 10.1016/j.jorganchem.2019.04.024
  2. Polymerization of ethylene glycol dimethacrylate ((EGDM), using an algerian clay as eco-catalyst (maghnite-h+ and maghnite-na+)

    Haoue S.. Bulletin of Chemical Reaction Engineering & Catalysis, 15 (1), 2020. doi: 10.9767/bcrec.15.1.6297.221-230
  3. Thermoplastic block copolymer: α-MethylStyrene and vinyl acetate catalyzed by clay layered called Maghnite-Na+ (Algerian MMT)

    Ayat M.. Journal of Polymer Research, 26 (9), 2019. doi: 10.1007/s10965-019-1873-7
  4. Influence of clay modification process in polypyrrole-layered silicate nanocomposite

    Mrah L.. SN Applied Sciences, 2 (4), 2020. doi: 10.1007/s42452-020-2338-7