skip to main content

Synthesis of Mesoporous Carbon from Merbau Sawdust as a Nickel Metal Catalyst Support for Castor Oil Hydrocracking

1Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Indonesia

2Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada, Indonesia

Received: 25 Nov 2021; Revised: 15 Feb 2022; Accepted: 16 Feb 2022; Available online: 19 Feb 2022; Published: 30 Mar 2022.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2022 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image
Abstract

Synthesis of mesoporous carbon from merbau sawdust with H2O2 as activator using reflux method followed by carbonization at 800 °C (RC800) had been carried out. This research is aiming to produce effective pathway to synthesize effective nickel-mesoporous carbon catalyst. The nickel metal was impregnated on the mesoporous carbon by wet impregnation using the salt precursor of Ni(NO3)2∙6H2O. The results showed that carbon RC800 and C800 had a specific surface area of 135.18 and 182.48 m2/g. Specific surface area of Ni/RC800 and Ni/C800 catalyst were 41.31 and 7.15 m2/g, respectively. The metal content in Ni/RC800 and Ni/C800 catalyst were 0.83 and 0.92 wt%, respectively. Ni/RC800 catalyst had the highest acidity (7.64 mmol/g) compared to Ni/C800 catalyst (6.99 mmol/g), RC800 (97.43 mmol/g), and C800 (6.17 mmol/g). The Ni/RC800 catalyst has the highest activity with the liquid product conversion of 66.01 wt%. Its selectivity towards gasoline fraction, diesel fraction, alcohol, and organic was 8.06, 1.17, 2.61, and 54.13%, respectively. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Fulltext View|Download
Keywords: hydrocracking; mesoporous carbon; castor oil; sawdust; nickel
Funding: Direktorat Sumber Daya, Direktorat Jenderal Pendidikan Tinggi, Riset dan Teknologi, Kementerian Pendidikan, Kebudayaan, Riset, dan Teknologi under contract Contract No. 7277/UN1/DITLIT/DIT-LIT/PT/2021).

Article Metrics:

  1. Das, M., Sarkar, M., Datta, A., Santra, A.K. (2018). An experimental study on the combustion, performance and emission characteristics of a diesel engine fueled with diesel-castor oil biodiesel blends. Renewable Energy, 119, 174-184. DOI: 10.1016/j.renene.2017.12.014
  2. Trisunaryanti, W., Sumbogo, S.D., Mukti, R.R., Kartika, I.A. (2021). Performance of low-content Pd and high-content Co, Ni supported on hierarchical activated carbon for the hydrotreatment of Calophyllum inophyllum oil (CIO). Reaction Kinetics, Mechanisms and Catalysis, 134(1), 259-272. DOI: 10.1007/s11144-021-02060-2
  3. Trisunaryanti, W., Larasati, S., Bahri, S., lailun Ni’mah, Y., Efiyanti, L., Amri, K., Nuryanto, R., Sumbogo, S.D. (2020). Performance comparison of Ni-Fe loaded on NH2-functionalized mesoporous silica and beach sand in the hydrotreatment of waste palm cooking oil. Journal of Environmental Chemical Engineering, 8(6), 104477. DOI: 10.1016/j.jece.2020.104477
  4. Trisunaryanti, W., Mukti, R.R., Kartika, I.A., Firda, P.B.D., Sumbogo, S.D., Prasetyoko, D., Bahruji, H. (2020). Highly selective hierarchical ZSM-5 from kaolin for catalytic cracking of Calophyllum inophyllum oil to biofuel. Journal of the Energy Institute, 93(6), 2238-2246. DOI: 10.1016/j.joei.2020.06.006
  5. Trovati, G., Suman, M.V.N., Sanches, E.A., Campelo, P.H., Neto, R.B., Neto, S.C., Trovati, L.R. (2019). Production and characterization of polyurethane castor oil (Ricinus communis) foam for nautical fender. Polymer Testing, 73, 87-93. DOI: 10.1016/j.polymertesting.2018.11.010
  6. Ganesan, R., Subramaniam, S., Paramasivam, R., Sabir, J.S., Josephin, J.F., Brindhadevi, K., Pugazhendhi, A. (2021). A study on biofuel produced by catalytic cracking of mustard and castor oil using porous Hβ and AlMCM-41 catalysts. Science of The Total Environment, 757, 143781. DOI: 10.1016/j.scitotenv.2020.143781
  7. Keera, S.T., El Sabagh, S.M., Taman, A.R. (2018). Castor oil biodiesel production and optimization. Egyptian Journal of Petroleum, 27(4), 979-984. DOI: 10.1016/j.ejpe.2018.02.007
  8. Wijaya, K., Ariyanti, A.D., Tahir, I., Syoufian, A., Rachmat, A. (2018). Synthesis of Cr/Al2O3-Bentonite Nanocomposite as the hydrocracking catalyst of Castor oil. In Nano Hybrids and Composites (Vol. 19, pp. 46-54). Trans Tech Publications Ltd. DOI: 10.4028/www.scientific.net/NHC.19.46
  9. Wijaya, K., Syoufian, A., Fitroturokhmah, A., Trisunaryanti, W., Adi Saputra, D. (2019). Chrom/Nanocomposite ZrO2-Pillared Bentonite Catalyst for Castor Oil (Ricinus communis) Hydrocracking. In Nano Hybrids and Composites (Vol. 27, pp. 31-37). Trans Tech Publications Ltd. DOI: 10.4028/www.scientific.net/NHC.27.31
  10. Saab, R., Polychronopoulou, K., Zheng, L., Kumar, S., Schiffer, A. (2020). Synthesis and performance evaluation of hydrocracking catalysts: A review. Journal of Industrial and Engineering Chemistry, 89, 83-103. DOI: 10.1016/j.jiec.2020.06.022
  11. Serrano, D.P., Melero, J.A., Morales, G., Iglesias, J., Pizarro, P. (2018). Progress in the design of zeolite catalysts for biomass conversion into biofuels and bio-based chemicals. Catalysis Reviews, 60(1), 1-70. DOI: 10.1080/01614940.2017.1389109
  12. Saab, R., Polychronopoulou, K., Zheng, L., Kumar, S., Schiffer, A. (2020). Synthesis and performance evaluation of hydrocracking catalysts: A review. Journal of Industrial and Engineering Chemistry, 89, 83-103. DOI: 10.1016/j.jiec.2020.06.022
  13. Li, T., Zhang, L., Tao, Z., Hu, C., Zhao, C., Yi, F., ... & Li, Y. (2020). Synthesis and characterization of amorphous silica-alumina with enhanced acidity and its application in hydro-isomerization/cracking. Fuel, 279, 118487. DOI: 10.1016/j.fuel.2020.118487
  14. Huang, P., Min, L.I.U., Chang, Q.L. (2020). MoO3/Al-SBA-15 modified catalyst and its application in coal tar hydrocracking. Journal of Fuel Chemistry and Technology, 48(9), 1079-1086. DOI: 10.1016/S1872-5813(20)30072-4
  15. Danilova, I.G., Dik, P.P., Sorokina, T.P., Gabrienko, A.A., Kazakov, M.O., Paukshtis, E.A., Doronin, V.P., Klomov, O.V., Noskov, A.S. (2021). Effect of rare earths on acidity of high-silica ultrastable REY zeolites and catalytic performance of NiMo/REY+ Al2O3 catalysts in vacuum gas oil hydrocracking. Microporous and Mesoporous Materials, 329, 111547. DOI: 10.1016/j.micromeso.2021.111547
  16. Santi, D., Trisunaryanti, W., Falah, I.I. (2020). Hydrocracking of pyrolyzed α-cellulose to hydrocarbon over MxOy/Mesoporous carbon catalyst (M= Co and Mo): Synthesis and characterization of carbon-based catalyst support from saw waste of Merbau wood. Journal of Environmental Chemical Engineering, 8(3), 103735. DOI: 10.1016/j.jece.2020.103735
  17. Heidarinejad, Z., Dehghani, M.H., Heidari, M., Javedan, G., Ali, I., Sillanpää, M. (2020). Methods for preparation and activation of activated carbon: a review. Environmental Chemistry Letters, 18(2), 393-415. DOI: 10.1007/s10311-019-00955-0
  18. Xue, Y., Du, C., Wu, Z., Zhang, L. (2018). Relationship of cellulose and lignin contents in biomass to the structure and RB-19 adsorption behavior of activated carbon. New Journal of Chemistry, 42(20), 16493-16502. DOI: 10.1039/C8NJ03007C
  19. Rodríguez Correa, C., Stollovsky, M., Hehr, T., Rauscher, Y., Rolli, B., Kruse, A. (2017). Influence of the carbonization process on activated carbon properties from lignin and lignin-rich biomasses. ACS Sustainable Chemistry & Engineering, 5(9), 8222-8233. DOI: 10.1021/acssuschemeng.7b01895
  20. Cheng, J., Zhang, Z., Zhang, X., Liu, J., Zhou, J., Cen, K. (2019). Hydrodeoxygenation and hydrocracking of microalgae biodiesel to produce jet biofuel over H3PW12O40-Ni/hierarchical mesoporous zeolite Y catalyst. Fuel, 245, 384-391. DOI: 10.1016/j.fuel.2019.02.062
  21. Gao, Y., Yue, Q., Gao, B., Li, A. (2020). Insight into activated carbon from different kinds of chemical activating agents: A review. Science of the Total Environment, 141094. DOI: 10.1016/j.scitotenv.2020.141094
  22. Liew, R.K., Chong, M.Y., Osazuwa, O.U., Nam, W.L., Phang, X.Y., Su, M.H., Chen, C.K., Chong, C.T., Lam, S.S. (2018). Production of activated carbon as catalyst support by microwave pyrolysis of palm kernel shell: a comparative study of chemical versus physical activation. Research on Chemical Intermediates, 44(6), 3849-3865. DOI: 10.1007/s11164-018-3388-y
  23. Prakash, M.O., Raghavendra, G., Ojha, S., Panchal, M. (2021). Characterization of porous activated carbon prepared from arhar stalks by single step chemical activation method. Materials Today: Proceedings, 39, 1476-1481. DOI: 10.1016/j.matpr.2020.05.370
  24. Luo, Y., Street, J., Steele, P., Entsminger, E., Guda, V. (2016). Activated carbon derived from pyrolyzed pinewood char using elevated temperature, KOH, H3PO4, and H2O2. BioResources, 11(4), 10433-10447
  25. Danish, M., Ahmad, T. (2018). A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application. Renewable and Sustainable Energy Reviews, 87, 1-21. DOI: 10.1016/j.rser.2018.02.003
  26. Sriningsih, W., Saerodji, M.G., Trisunaryanti, W., Armunanto, R., Falah, I.I. (2014). Fuel production from LDPE plastic waste over natural zeolite supported Ni, Ni-Mo, Co and Co-Mo metals. Procedia Environmental Sciences, 20, 215-224. DOI: 10.1016/j.proenv.2014.03.028
  27. Trisunaryanti, W., Larasati, S., Triyono, T., Paramesti, C., Santoso, N.R. (2020). Selective production of green hydrocarbons from the hydrotreatment of waste coconut oil over Ni-and NiMo-supported on amine-functionalized mesoporous silica. Bulletin of Chemical Reaction Engineering & Catalysis, 15(2), 415-431. DOI: 10.9767/bcrec.15.2.7136.415-431

Last update:

No citation recorded.

Last update:

No citation recorded.