skip to main content

Highly Efficient Synthesis of 1-Thioamidoalkyl-2-naphthols and 14-Aryl-14H-dibenzo[a,j]xanthenes using a Novel Ionic Liquid: Catalyst Preparation, Characterization and Performing the Reactions

Department of Chemistry, Payame Noor University, PO BOX 19395-3697, Tehran, Iran, Islamic Republic of

Received: 21 Jun 2017; Revised: 6 Oct 2017; Accepted: 9 Oct 2017; Available online: 11 Jun 2018; Published: 1 Aug 2018.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2018 by Authors, Published by BCREC Group under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract

In this work, a novel Brønsted acidic ionic liquid namely triethylaminium-N-sulfonic acid trifluoroacetate {[TEASA][TFA]} has been synthesized by the reaction of NEt3 with ClSO3H, and then with CF3CO2H. The ionic liquid has been characterized by studying its spectroscopic data (1H and 13C NMR, FT-IR, and mass spectra). Afterward, it has been utilized as a highly effective and general catalyst to promote the following organic reactions in solvent-free conditions: (i) the production of 1-thioamidoalkyl-2-naphthols from arylaldehydes, 2-naphthol and thioacetamide, and (ii) the preparation of 14-aryl-14H-dibenzo[a,j]xanthenes from arylaldehydes and 2-naphthol. It is noteworthy that [TEASA][TFA] has catalyzed the reactions under milder conditions relative to most of the reported methods. Moreover, it afforded the both products in higher yields with respect to most of the previous works. 

Fulltext View|Download
Keywords: Triethylaminium-N-sulfonic acid trifluoroacetate {[TEASA][TFA]}; Brønsted acidic ionic liquid; 1-Thioamidoalkyl-2-naphthol; 14-Aryl-14H-dibenzo[a,j]xanthene
Funding: Research Council of Payame Noor University

Article Metrics:

  1. Wasserscheid, Welton, P. T. (2008). Ionic Liquids in Synthesis, Wiley-VCH, Weinheim
  2. Sangian, H.F., Kristian, J., Rahma, S., Dewi, H., Puspasari, D., Agnesty, S., Gunawan, S., Widjaja, A. (2015). Preparation of Reducing Sugar Hydrolyzed from High-Lignin Coconut Coir Dust Pretreated by the Recycled Ionic Liquid [mmim][dmp] and Combination with Alkaline. Bulletin of Chemical Reaction Engineering & Catalysis, 10: 8-22
  3. Honarmand, M., Esmaeili, E. (2017). Tris(hydroxymethyl)methane ammonium hydrogensulphate as a nano ionic liquid and its catalytic activity in the synthesis of bis(indolyl)methanes. Journal of Molecular Liquids, 225: 741-749
  4. Roslan, N.A., Che Hasnan, M.H., Abdullah, N., Abdullah, S.B., Abidin, S.Z. (2016). A Preliminary Study: Esterification of Free Fatty Acids (FFA) in Artificially Modified Feedstock Using Ionic Liquids as Catalysts. Bulletin of Chemical Reaction Engineering & Catalysis, 11: 182-190
  5. Caldas, B.S., Nunes, C.S., Souza, P.R., Rosa, F.A., Visentainer, J.V., Júnior, O.de O.S., Muniz, E.C. (2016). Supercritical ethanolysis for biodiesel production from edible oil waste using ionic liquid [HMim][HSO4] as catalyst. Applied Catalysis B: Environmental, 181: 289-297
  6. Fareghi-Alamdari, R., Nadiri Niri, M., Hazarkhani, H. (2017). Synthesis and characterization of a new hydroxyl functionalized diacidic ionic liquid as catalyst for the preparation of diester plasticizers. Journal of Molecular Liquids, 227: 153-160
  7. Zolfigol, M.A., Khazaei, A., Moosavi-Zare, A.R., Zare, A., Kruger, H.G., Asgari, Z., Khakyzadeh, V., Kazem-Rostami, M. (2012). Design of Ionic Liquid 3-Methyl-1-sulfonic Acid Imidazolium Nitrate as Reagent for the Nitration of Aromatic Compounds by in Situ Generation of NO2 in Acidic Media. Journal of Organic Chemistry, 77: 3640-3645
  8. Zare, A., Moosavi-Zare, A.R., Merajoddin, M., Zolfigol, M.A., Hekmat-Zadeh, T., Hasaninejad, A., Khazaei, A., Mokhlesi, M., Khakyzadeh, V., Derakhshan-Panah, F., Beyzavi, M.H., Rostami, E., Arghoon, A., Roohandeh, R. (2012). Ionic liquid triethylamine-bonded sulfonic acid {[Et3N-SO3H]Cl} as a novel, highly efficient and homogeneous catalyst for the synthesis of β-acetamido ketones, 1,8-dioxo-octahydroxanthenes and 14-aryl-14H-dibenzo[a,j]xanthenes. Journal of Molecular Liquids, 167: 69-77
  9. Zare, A., Nasouri, Z. (2016). A green approach for the synthesis of 3,4-dihydropyrimidin-2-(1H)-ones (and -thiones) using N,N-diethyl-N-sulfoethanaminium hydrogen sulfate. Journal of Molecular Liquids, 216: 364-369
  10. Moosavi-Zare, A. R., Zolfigol, M.A., Zarei, M., Zare, A., Khakyzadeh, V., Hasaninejad, A. (2013). Design, characterization and application of new ionic liquid 1-sulfopyridinium chloride as an efficient catalyst for tandem Knoevenagel-Michael reaction of 3-methyl-1-phenyl-1H-pyrazol-5(4H)-one with aldehydes. Applied Catalysis A: General, 467: 61-68
  11. Vaddula, B.R., Varma, R.S., Leazer, J. (2013). Mixing with microwaves: solvent-free and catalyst-free synthesis of pyrazoles and diazepines. Tetrahedron Letters, 54: 1538-1541
  12. Rana, S., Jonnalagadda, S.B. (2017). Synthesis and characterization of amine functionalized graphene oxide and scope as catalyst for Knoevenagel condensation reaction. Catalysis Communications, 92: 31-34
  13. Himaja, M., Poppy, D., Asif, K. (2011). Green technique-solvent free synthesis and its advantages. International Journal of Research in Ayurveda & Pharmacy, 2: 1079-1086
  14. Shen, A.Y., Tsai, C.T., Chen, C.L. (1999). Synthesis and cardiovascular evaluation of N-substituted 1-aminomethyl-2-naphthols. European Journal of Medicinal Chemistry, 34: 877-882
  15. Gyemant, N., Engi, H., Schelz, Z., Szatmari, I., Toth, D., Fulop, F., Nar, J.M., Witte, P.D. (2010). In vitro and in vivo multidrug resistance reversal activity by a Betti-base derivative of tylosin. British Journal of Cancer, 103: 178-185
  16. Kidwai, M., Chauhan, R. (2013). Catalyst-free Synthesis of Betti bases in a Mannich-Type Reaction. Asian Journal of Organic Chemistry, 2: 395-398
  17. Wei, H.-X., Lu, D., Sun, V., Zhang, J., Gu, Y., Osenkowski, P., Ye, W., Selkoe, D.J., Wolfe, M.S., Augelli-Szafran, C.E. (2016). Part 2. Notch-sparing γ-secretase inhibitors: The study of novel γ-amino naphthyl alcohols. Bioorganic and Medicinal Chemistry Letters, 26: 2133-2137
  18. Zhang, Z.-P., Wen, J.-M., Li, J.-H., Hu, W.-X. (2009). One-pot synthesis of thiocarbamidoalkyl naphthols. Journal of Chemical Research, 3: 162-164
  19. Khazaei, A., Abbasi, F., Moosavi-Zare, A.R. (2015). Catalytic application of N,2-dibromo-6-chloro-3,4-dihydro-2Hbenzo[e][1,2,4]thiadiazine-7-sulfonamide 1,1-dioxide on the synthesis of 1-carbamato-alkyl-2-naphthols and 1-thioamido-alkyl-2-naphthols. Journal of Sulfur Chemistry, 36: 364-372
  20. Zare, A., Kaveh, H., Merajoddin, M., Moosavi-Zare, A.R., Hasaninejad, A., Zolfigol, M.A. (2013). Saccharin sulfonic acid (SASA) as a highly efficient catalyst for the condensation of 2-naphthol with arylaldehydes and amides (thioamides and alkyl carbamates) under green, mild and solvent-free conditions. Phosphorus, Sulfur and Silicon, and the Related Elements, 188: 573-584
  21. Zare, A., Akbarzadeh, S., Foroozani, E., Kaveh, H., Moosavi-Zare, A.R., Hasaninejad, A., Mokhlesi, M., Beyzavi, M.H., Zolfigol, M.A. (2012). Triethylamine-bonded sulfonic acid ([Et3N-SO3H]Cl): a highly efficient and homogeneous catalyst for the condensation of 2-naphthol with arylaldehydes and amides (alkyl carbamates or thioamides). Journal of Sulfur Chemistry, 33: 259-272
  22. Kantevari, S., Vuppalapati, S.V.N., Nagarapu, L. (2007). Montmorillonite K10 catalyzed efficient synthesis of amidoalkyl naphthols under solvent free conditions. Catalysis Communications, 8: 1857-1862
  23. Hassanabadi, A., Hosseini-Tabatabaei, M.R. (2012). A three-component novel synthesis of 1-[aryl(thioacetamido)methyl]-2-naphthol derivatives. Journal of Chemical Research, 510-511
  24. Eshghi, H., Zohuri, G.H., Damavandi, S. (2012). Synthesis of novel thioamidoalkyl- and thiocarbamidoalkyl naphthols via a three-component condensation reaction using heterogeneous catalyst of ferric hydrogensulfate. Synthetic Communications, 42: 516-525
  25. Ghorbani-Choghamarani, A., Rashidimoghadam, S. (2015). 1,3-Dibromo-5,5-dimethylhydantoin as an efficient catalyst for synthesis of thioamidoalkyl and bis(thio)amidoalkyl-2-naphthols under solvent-free conditions. Research on Chemical Intermediates, 41: 6271-6281
  26. Jamison, J.M., Krabill, K., Hatwalkar, A., Jamison, E., Tsai, C. (1990). Potentiation of the antiviral activity of poly r(A-U) by xanthene dyes. Cell Biology International Reports, 14: 1075-1084
  27. Hideo, T. (1981). Benzopyrano[2,3-b]xanthene Derivatives. Jpn. Tokkyo Koho JP, 56005480, Chemical Abstract, 95: 80922b
  28. Poupelin, J.P., Saint-Ruf, G., Foussard-Blanpin, O., Narcisse, G., Uchida-Ernouf, G., Lacroix, R. (1978). Synthesis and antiinflammatory properties of bis (2-hydroxy-1-naphthyl)methane derivatives I. European Journal of Medicinal Chemistry, 13: 67-71
  29. Knight, C.G., Stephens, V. (1989). Xanthene-Dye-Labelled Phosphatidylethanolamines as Probes of Interfacial pH. Studies in Phospholipid Vesicles. Biochemical Journal, 258: 683-387
  30. Ion, R.M., Frackowiak, D., Wiktorowicz, P.K. (1998). The incorporation of various porphyrins into blood cells measured via flow cytometry, absorption and emission spectroscopy. Acta Biochimica Polonica, 45: 833-845
  31. Ahmad, M., King, T.A., Cha, B.H., Lee, J. (2002). Performance and Photostability of Xanthene and Pyrromethene Laser Dyes in Sol-Gel Phases. Journal of Physics D: Applied Physics, 35: 1473-1476
  32. Pasha, M.A., Jayashankara, V.P. (2007). Molecular iodine catalyzed synthesis of aryl-14H-dibenzo[a,j]xanthenes under solvent-free condition. Bioorganic and Medicinal Chemistry Letters, 17: 621-623
  33. Zolfigol, M.A., Moosavi-Zare, A.R., Arghavani-Hadi, P., Zare, A., Khakyzadeh, V., Darvishi, G. (2012). WCl6 as an efficient, heterogeneous and reusable catalyst for the preparation of 14-aryl-14H-dibenzo[a,j]xanthenes with high TOF. RSC Advances, 2: 3618-3620
  34. Safari, J., Aftabi, P., Ahmadzadeh, M., Sadeghi, M., Zarnegar, Z. (2017). Sulfonated starch nanoparticles: An effective, heterogeneous and bio-based catalyst for synthesis of 14-aryl-14-H-dibenzo[a,j]xanthenes, Journal of Molecular Structure, 1142: 33-39
  35. Bartolomeu, A.A., Menezes, M., Filho, L.S. (2014). Efficient one-pot synthesis of 14-aryl-14H-dibenzo[a,j]xanthene derivatives promoted by niobium pentachloride, Chemical Papers, 68: 1593-1600
  36. Zare, A., Merajoddin, M., Abi, F., Moosavi-Zare, A.R., Mokhlesi, M., Zolfigol, M.A., Asgari, Z., Khakyzadeh, V., Hasaninejad, A., Khalafi-Nezhad, A., Parhami, A. (2012). Trityl Chloride (TrCl): Efficient and Homogeneous Organocatalyst for the Solvent-Free Synthesis of 14-Aryl-14H-dibenzo[a,j]xanthenes by in situ Formation of Carbocationic System. Journal of the Chinese Chemical Society, 59: 860-865
  37. Wu, L., Yang, C., Yang, L., Yang, L. (2010). Synthesis of 14-Substituted-14H-Dibenzo[a,j] Xanthenes and 1,8-Dioxo-Octahydroxanthenes Using Silica Chloride (SiO2-Cl) Under Solvent-Free Conditions. Phosphorus, Sulfur and Silicon, and the Related Elements, 185: 903-909
  38. Mirjalili, B.F., Bamoniri, A., Akbari, A., Taghavinia, N. (2011). Nano-TiO2: an eco-friendly and re-usable catalyst for the synthesis of 14-aryl or alkyl-14H-dibenzo [a,j] xanthenes. Journal of the Iranian Chemical Society, 8: S129-S134
  39. Moosavi-Zare, A.R., Zolfigol, M.A., Khaledian, O., Khakyzadeh, V. (2014). Condensation of 2-naphtol with arylaldehydes using acetic acid functionalized ionic liquids as highly efficient and reusable catalysts. Chinese Journal of Catalysis, 35: 573-578
  40. Kumar, A., Rout, L., Achary, L.S.K., Dhaka, R.S., Dash, P. (2017). Greener Route for Synthesis of aryl and alkyl-14H-dibenzo [a.j] xanthenes using Graphene Oxide-Copper Ferrite Nanocomposite as a Recyclable Heterogeneous Catalyst. Scientific Reports, 7: 42975

Last update:

No citation recorded.

Last update:

No citation recorded.