skip to main content

Insight into Structural Features of Magnetic Kaolinite Nanocomposite and Its Potential for Methylene Blue Dye Removal from Aqueous Solution

1Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Negeri Sembilan branch, Kuala Pilah campus, 72000 Kuala Pilah, Negeri Sembilan, Malaysia

2Nanotechnology & Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur 50603, Malaysia

Received: 11 Nov 2021; Revised: 27 Jan 2022; Accepted: 27 Jan 2022; Available online: 1 Feb 2022; Published: 30 Mar 2022.
Editor(s): Istadi Istadi, Suresh Sagadevan
Open Access Copyright (c) 2022 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image
Abstract

An in-depth understanding on the structural features of engineered magnetic adsorbent is important for forecasting its efficiencies for environmental clean-up studies. A magnetic kaolinite nanocomposite (MKN) was prepared using Malaysia’s natural kaolinite via co-precipitation method with a three different clay: iron oxide mass ratio (MKN 1:1, MKN 2:1 and MKN 5:1). The morphology and structural features of the magnetic composites were systematically investigated using techniques, such as: Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), surface area analysis (BET), Vibrating Sample Magnetometer (VSM), and zeta potential measurement. The removal efficiencies of the adsorbent for Methylene Blue (MB) dye were studied in batch method as a function of pH and initial concentration. MKN1:1 demonstrated the highest magnetisation susceptibility (Ms) of 35.9 emu/g with four-fold-increase in specific surface area as compared to the pristine kaolinite. Preliminary experiment reveals that all MKNs showed almost 100% removal of MB at low initial concentration (<50 ppm). The spent MKN adsorbent demonstrated an easy recovery via external magnetic field separation and recorded maximum adsorption capacity of 18.1 mg/g. This research gives an insight on the surface characteristics of magnetic clay composite for potential application as an effective and low-cost adsorbent in treating dye contaminated water. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Fulltext View|Download
Keywords: magnetic; kaolinite; nanocomposite; structural; dye
Funding: Ministry of Higher Education of Malaysia under contract Fundamental Research Grant Scheme (Grant No: FRGS/1/2019/STG07/UITM/02/15)

Article Metrics:

  1. Jawad, A.H., Abdulhameed, A.S. (2020). Mesoporous Iraqi red kaolin clay as an efficient adsorbent for methylene blue dye: Adsorption kinetic, isotherm and mechanism study. Surfaces and Interfaces, 18, 100422. DOI: 10.1016/j.surfin.2019.100422
  2. Alver, E., Brouers, F. (2020). Methylene blue adsorption on magnetic alginate / rice husk. International Journal of Biological Macromolecules, 154, 104–113. DOI: 10.1016/j.ijbiomac.2020.02.330
  3. Chang, J., Ma, J., Ma, Q., Zhang, D., Qiao, N., Hu, M., Ma, H. (2016). Adsorption of methylene blue onto Fe3O4/activated montmorillonite nanocomposite. Applied Clay Science, 119, 132–140. DOI: 10.1016/j.clay.2015.06.038
  4. Kandisa, R.V., Saibaba K.V.N., Shaik, K.B., Gopinath, R. (2016). Dye Removal by Adsorption: A Review. Journal of Bioremediation and Biodegradation, 7(6), 1000371. DOI: 10.4172/2155-6199.1000371
  5. Wahyuni, T., Prasetyoko, D., Suprapto, S., Qoniah, I., Bahruji, H., Dawam, A., Triwahyono, S., Jalil, A.A. (2019). Direct synthesis of sodalite from Indonesian kaolin for adsorption of Pb2+ solution, kinetics, and isotherm approach. Bulletin of Chemical Reaction Engineering and Catalysis, 14(3), 502–512. DOI: 10.9767/bcrec.14.3.2939.502-512
  6. Mukhopadhyay, R., Bhaduri, D., Binoy, S., Ruhaida, R., Deyi, H., Rubina, K., Subhas, S., Biswas, J.K., Vithanage, M., Bhatnagar, A., Ok, Y.S. (2020). Clay–polymer nanocomposites: Progress and challenges for use in sustainable water treatment. Journal of Hazardous Materials, (383), 121125. DOI: 10.1016/j.jhazmat.2019.121125
  7. Abdullahi, T., Harun, Z., Hafiz, M., Othman, D., Nazri, K. (2019). Preliminary studies on hydrothermal synthesis of zeolite from Malaysian kaolinite clays. Malaysian Journal of Fundamental and Applied Sciences, 15(3), 421–425. DOI: 10.11113/mjfas.v15n3.1213
  8. Minerals and Geoscience Department Malaysia. (2013). Commodity Review: Kaolin. Malaysian Minerals Yearbook 2013, Ministry of Natural Resources and Environment Malaysia. MYB 2013 Preface.pmd (jmg.gov.my)
  9. Nasarah, S.A. (27th April 2021). Transforming The Nation’s Mineral Resources Industry. The Star, 10, https://www.thestar.com.my/news/nation/2021/04/27/transforming-the-nations-mineral-resources-industry
  10. Chukwuemeka-Okorie, H.O., Ekemezie, P.N., Akpomie, K.G., Olikagu, C.S. (2018). Calcined corncob-kaolinite Combo as new sorbent for sequestration of toxic metal ions from polluted aqua media and desorption. Frontiers In Chemistry, 6(273), 1-13. DOI: 10.3389/fchem.2018.00273
  11. Rusmin, R., Sarkar, B., Mukhopadhyay, R., Tsuzuki, T., Liu, Y., Naidu, R. (2022). Facile one pot preparation of magnetic chitosan-palygorskite nanocomposite for efficient removal of lead from water. Journal of Colloid and Interface Science, 608, 575-587. DOI: 10.1016/j.jcis.2021.09.109
  12. Chen, L., Zhou, C.H., Fiore, S., Tong, D.S., Zhang, H., Li, C.S., Ji, S.F., Yu, W.H. (2016). Functional magnetic nanoparticle/clay mineral nanocomposites: Preparation, magnetism and versatile applications. Applied Clay Science, 127–128, 143–163. DOI: 10.1016/j.clay.2016.04.009
  13. Rahmanivahid, B., Naderi, F., Nayebzadeh, H. (2020). Removing methyl orange molecules from aqueous medium by magnetic nanoparticles: Evaluating adsorption factors, isotherms, kinetics and thermodynamics. Journal of Water and Environmental Nanotechnology, 5(1), 1–16. DOI: 10.22090/jwent.2020.01.001
  14. Liu, H., Chen, W., Liu, C., Liu, Y., Dong, C. (2014). Magnetic mesoporous clay adsorbent: Preparation, characterization and adsorption capacity for atrazine. Microporous and Mesoporous Materials, 194, 72–78. DOI: 10.1016/j.micromeso.2014.03.038
  15. Izman, I.S., Baharin, S.N.A., Rusmin, R. (2020). Magnetic Kaolinite Composite for Lead Removal in Aqueous Solution. Malaysian Journal of Analytical Sciences, 24(1), 115–124
  16. Mirbagheri, N.S., Sabbaghi, S. (2018). A natural kaolin/γ-Fe2O3 composite as an efficient nano-adsorbent for removal of phenol from aqueous solutions. Microporous and Mesoporous Materials, 259, 134–141. DOI: 10.1016/j.micromeso.2017.10.007
  17. Panda, A.K., Mishra, B.G., Mishra, D.K., Singh, R.K. (2010). Effect of sulphuric acid treatment on the physico-chemical characteristics of kaolin clay. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 363 (1–3), 98–104. DOI: 10.1016/j.colsurfa.2010.04.022
  18. Mbey, J.A., Thomas, F., Razafitianamaharavo, A., Caillet, C., Villiéras, F. (2019). Applied Clay Science A comparative study of some kaolinites surface properties. Applied Clay Science, 172, 135–145. DOI: 10.1016/j.clay.2019.03.005
  19. Awwad, A.M., Amer, M.W., Al-aqarbeh, M.M. (2020). TiO2-kaolinite nanocomposite prepared from the Jordanian Kaolin clay : Adsorption and thermodynamics of Pb(II) and Cd (II) ions in aqueous solution. Chemistry International, 6(4), 168–178. DOI: 10.5281/zenodo.3597558
  20. Chai, J., Au, P., Mubarak, N.M., Khalid, M., Ng, W.P. (2020). Adsorption of heavy metal from industrial wastewater onto low-cost Malaysian kaolin clay–based adsorbent. Environmental Science and Pollution Research, 27, 13949–13962. DOI: 10.1007/s11356-020-07755-y
  21. Magdy, A., Fouad, Y.O., Abdel-Aziz, M.H., Konsowa, A.H. (2017). Synthesis and characterization of Fe3O4/kaolin magnetic nanocomposite and its application in wastewater treatment. Journal of Industrial and Engineering Chemistry, 56, 299–311. DOI: 10.1016/j.jiec.2017.07.023
  22. Tokarčíková, M., Tokarský, J., Kutláková, K.M., Seidlerová, J. (2017). Testing the stability of magnetic iron oxides/kaolinite nanocomposite under various pH conditions. Journal of Solid State Chemistry, 253, 329–335. DOI: 10.1016/j.jssc.2017.06.004
  23. Belachew, N., Getahun, B. (2020). Synergy of magnetite intercalated bentonite for enhanced adsorption of Congo Red dye. Silicon, 12(3), 603-612. DOI: 10.1007/s12633-019-00152-2
  24. Li, Z., Wang, C.J., Jiang, W.T. (2010). Intercalation of methylene blue in a high-charge calcium montmorillonite - An indication of surface charge determination. Adsorption Science and Technology, 28(4), 297–312. DOI: 10.1260/0263-6174.28.4.297
  25. Ovchinnikov, O.V., Evtukhova, A.V., Kondratenko, T.S., Smirnov, M.S., Khokhlov, V.Y., Erina, O.V. (2016). Manifestation of intermolecular interactions in FTIR spectra of methylene blue molecules. Vibrational Spectroscopy, 86, 181–189. DOI: 10.1016/j.vibspec.2016.06.016
  26. Rusmin, R., Sarkar, B., Tsuzuki, T., Kawashima, N., Naidu, R. (2017). Removal of lead from aqueous solution using superparamagnetic palygorskite nanocomposite: Material characterization and regeneration studies. Chemosphere, 186, 1006–1015. DOI: 10.1016/j.chemosphere.2017.08.036
  27. Yamaura, M., Alves, D. (2013). Synthesis and characterization of magnetic adsorbent prepared by magnetite nanoparticles and zeolite from coal fly ash. Journal of Material Science, 48, 5093–5101. DOI: 10.1007/s10853-013-7297-6
  28. Huang, G.Q., Qi, G.J., Gao, T.Y., Zhang, J., Zhao, Y.H. (2020). Fe-pillared montmorillonite as effective heterogeneous Fenton catalyst for the decolorization of methyl orange. Journal of Chemical Sciences, 132(1), 116. DOI: 10.1007/s12039-020-01820-2
  29. Cottet, L., Almeida, C.A.P., Naidek, N., Viante, M.F., Lopes, M.C., Debacher, N.A. (2014). Adsorption characteristics of montmorillonite clay modified with iron oxide with respect to methylene blue in aqueous media. Applied Clay Science, 95, 25–31. DOI: 10.1016/j.clay.2014.03.023
  30. Hoor, Y.Q., Au, P.I., Mubarak, N.M., Khalid, M., Jagadish, P., Walvekar, R., Abdullah, E.C. (2020). Surface force arising from adsorbed graphene oxide in kaolinite suspensions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 592, 124592. DOI: 10.1016/j.colsurfa.2020.124592
  31. Mandel, K., Granath, T., Dembski, S., Sextl, G. (2015). Surfactant free superparamagnetic iron oxide nanoparticles for stable ferrofluids in physiological solutions. Chemical Communications, 51, 2863–2866. DOI: 10.1039/c4cc09277e
  32. Shikuku, V.O., Mishra, T. (2021). Adsorption isotherm modeling for methylene blue removal onto magnetic kaolinite clay: a comparison of two-parameter isotherms. Applied Water Science, 11 (6), 1–9. DOI: 10.1007/s13201-021-01440-2
  33. Lou, Z., Zhou, Z., Zhang, W., Zhang, X., Hu, X., Liu, P., Zhang, H. (2015). Magnetized bentonite by Fe3O4 nanoparticles treated as adsorbent for methylene blue removal from aqueous solution: synthesis, characterization, mechanism, kinetics and regeneration. Journal of the Taiwan Institute of Chemical Engineers, 49, 199-205. DOI: 10.1016/j.jtice.2014.11.007
  34. Mu, Y., Jia, F., Ai, Z., Zhang, L. (2017). Iron oxide shell mediated environmental remediation properties of nano zero-valent iron. Environmental Science: Nano, 4(1), 27-45. DOI: 10.1039/C6EN00398B
  35. Tireli, A.A., Guimarães, I.d.R., Terra, J.C.d.S., Silva, R.R.d., Guerreiro, M.C. (2015). Fenton-like processes and adsorption using iron oxide-pillared clay with magnetic properties for organic compound mitigation. Environmental Science and Pollution Research, 22, 870–881. DOI: 10.1007/s11356-014-2973-x
  36. Tireli, A.A., Marcos, F.C.F., Oliveira, L.F., Guimarães, I.d.R., Guerreiro, M.C., Silva, J.P. (2014). Influence of magnetic field on the adsorption of organic compound by clays modified with iron. Applied Clay Science, 97–98, 1–7. DOI: 10.1016/j.clay.2014.05.014
  37. Xu, H., Liu, J., Chen, P., Shao, G., Fan, B., Wang, H., Chen, D., Lu, H., Zhang, R. (2018). Preparation of Magnetic Kaolinite Nanotubes for the Removal of Methylene Blue from Aqueous Solution. Journal of Inorganic and Organometallic Polymers and Materials, 28(3), 790–799. DOI: 10.1007/s10904-017-0728-0

Last update:

No citation recorded.

Last update:

No citation recorded.