skip to main content

CTAB Reverse Micelles as Catalysts for the Oxidation of Ascorbic Acid by K3[Fe(CN)6]

1Department of Physical and Nuclear Chemistry and Chemical Oceanography, School of Chemistry, Andhra University, Visakhapatnam, AP, India

2Department of Chemistry, Gayathri Vidya Parishad College of Engineering (Autonomous), Madhurawada, Visakhapatna, AP, India

Received: 11 Nov 2021; Revised: 4 Jan 2022; Accepted: 5 Jan 2022; Available online: 7 Jan 2022; Published: 30 Mar 2022.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2021 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image
Abstract

The oxidation of ascorbic acid by K3[Fe(CN)6] was studied in reverse micellar systems composed of CTAB (Cetyltrimethylammonium bromide), and it was found  the observed first order  (k1(aq) = 5.2×105 s1, k1(rev) = 61.4×104 s1) rate constant in reverse micellar medium is around forty times higher compared to aqueous medium under identical conditions. The rate enhancement (k2(aq) = 0.9×105 mole1.dm3.sec1, k2(rev) = 1.75×103 mole1.dm3.sec1)  is attributed to the large concentration effect and lower dielectric constant in the reverse micelles. The rate of the reaction increases with increase in W = {[H2O]/[surfactant]} which is explained in terms of ionic strength of the water pool. The effect of surfactant concentration on rate was explained on the basis of Berezin pseudo phase model. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Fulltext View|Download
Keywords: Ascorbic acid; [K3Fe(CN)6]; CTAB (Cetyltrimethylammonium bromide); dielectric constant; reverse micelles.
Funding: Ministry of Earth Sciences (MOES), National Center for Coastal Research (NCCR), India - under major project No.MOES/ICMAM-PD/Supply. Order/81/2017

Article Metrics:

  1. Michael, R., Branka, M.L., Nancy, E.L., Kenneth, W.H. (2004). Water motion in reverse micelles studied by quasi elastic neutron scattering and molecular dynamics simulations. Journal of Chemical Physics, 121, 7855-7868. DOI: 10.1063/1.1792592.3
  2. Amanda, J.M., John, W., Melanie, M.B. (2014). NMR and molecular dynamics study of the size, shape, and composition of reverse micelles in a cetyltrimethylammonium bromide (CTAB)/n-hexane/pentanol/water microemulsion. Journal of Physical chemistry B, 118, 10767-10775. DOI: 10.1021/jp504585k
  3. Lubica, K., Eva, M., Peter, S., Petr, S., Petr, K. (2015). Nature of CTAB/Water/Chloroform Reverse Micelles at Above- and Subzero Temperatures Studied by NMR and Molecular Dynamics Simulations. Langmuir, 31, 8284– 8293. DOI: 10.1021/acs.langmuir.5b01776
  4. Menger, F.M., Donohue J.A., Williams, R.F. (1973). Catalysis in water pools. Journal of American Chemical Society, 95, 286-288. DOI: 10.1021/ja00782a075
  5. Chuanyi, Y., Shaokun, T., He, Z., Deng, X. (2005). Kinetics of lipase-catalyzed hydrolysis of olive oil in AOT/isooctane/reverse micelles. Journal of Molecular Catalysis B Enzymatic, 35, 108-112. DOI: 10.1016/j.molcatb.2005.06.005
  6. Johnson, M.D., Lorenz, B.B., Wilkins, P.C., Lemons, B.G., Baruah, B., Lamborn, N., Stahla, M., Chatterjee, P.B., Richens, D.T., Crans, D.C. (2012). Switching Off Electron Transfer Reactions in Confined Media: Reduction of [Co (dipic)2]− and [Co(EDTA)]− by Hexacyanoferrate(II). Inorganic Chemistry, 51, 2757-2765. DOI: 10.1021/ic201247v.5
  7. Gallie, D. R. (2013). L-ascorbic acid: A multifunctional molecule supporting plant growth and development. Scientifica, 1–24. DOI: 10.1155/2013/795964
  8. Gallie, D.R. (2013). The role of l-ascorbic acid recycling in responding to environmental stress and in promoting plant growth. Journal of experimental botany, 64, 433–443. DOI: 10.1093/jxb/ers330
  9. Akram, N.A., Shafq, F., Ashraf, M. (2017). Ascorbic acid-a potential oxidant scavenger and its role in plant development and abiotic stress tolerance. Frontiers in plant Science, 8, 1-9. DOI: 10.3389/fpls.2017.00613
  10. Kai, S., Jingxia, Q., Jiwei, L., Yuqing, M. (2009). Preparation and characterization of gold nanoparticles using ascorbic acid as reducing agent in reverse micelles. Journal of Materials Science, 44, 754–758. DOI: 10.1007/s10853-008-3162-4
  11. Viktor, A.T., Tatyana, V.K., Nikolay, E.P., George, J.K. (2020). Redox Interactions of Vitamin C and Iron: Inhibition of the Pro-Oxidant Activity by Deferiprone. International Journal of Molecular Science, 21, 1-16, DOI: 10.3390/ijms21113967
  12. Luis J.A.M., Barbosa da Ccsta, J. (1988). The Oxidation of Ascorbic Acid by Hexacyanoferrate(lll) Ion in Acidic Aqueous Media. Application of the Marcus cross-relation. Journal of Chemical Education, 65(2), 176. DOI: 10.1021/ed065p176
  13. Venkateswarlu, G., Shyamala, P., Subba Rao, P.V., Ramakrishna, K. (2002). Kinetics of dissociation of tris-(2, 2'-bipyridyl) and tris-(1, 10-phenanthroline) iron(II) complexes in the presence of OH– in the water pools of CTAB reverse micelles. Indian Journal of Chemistry, 41A, 1410-1414
  14. Shyamala, P., Subba Rao, P.V. (2010). Kinetics of Oxidation of Iodide by Vanadium (V): Catalysis by the Water Pools of CTAB Reverse Micelles. Kinetics and Catalysis, 51, 207-210. DOI: 10.1134/S0023158410020060
  15. Padma, M., Shyamala, P., Satyanarayana, A. Subba Rao, P.V., Asha, M. (2016). Catalytic effect of CTAB reverse micelles on reduction of toluidine blue by ascorbic acid. Indian Journal of Chemistry, 52, 221-225
  16. Perez-Benito J.F., Arias, C. Rodriguez, R.M., Marta, R. (1998). Kinetics and mechanism of the reduction of chromium (VI) by D-ribose. New Journal of Chemistry, 22, 1445-1451. DOI: 10.1039/A803690J
  17. Schultz, R.D., Dekkar, A.O. (1956). Oxidation of Ascorbic Acid by Oxygen with Cupric Ion as Catalyst. The Journal of Physical Chemistry, 60(8), 1095-1100. DOI: 10.1021/j150542a016
  18. Hashmi, M.H., Ayaz, A.A., Viegas, A., Subhan adil, A. (1971). Determination of Ascorbic Acid and differential detection of the vitamin and reducing sugars. MicroChemical Journal, 16(4), 645-651. DOI: 10.1016/0026-265x(71)90057-9
  19. Luisi, P.L., Straub, B.E., (1984). Biological and Technological Relevance of Amphiphilic Structures in Apolar Media. Reverse Micelles, (Eds.), Springer
  20. Nagalakshmi, K.V., Shyamala, P. (2019). Kinetics of oxidation of [Fe(phen)3] +2 by persulphate: catalysis in the water pools of CTAB reverse micelles. Bulgarian Chemical Communications, 51, 494–498. DOI: 10.34049/bcc.51.4.4946
  21. Nagalakshmi, K.V., Shyamala, P. (2020). Acid Hydrolysis of Bis (2, 2'; 6', 2''–Terpyridyl) Iron (II) Complex in the Water Pools of CTAB/Hexane/Chloroform Reverse Micelles-A Kinetic Study in Confined Medium. Bulletin of Chemical Reaction Engineering & Catalysis, 15(3), 853-860. DOI: 10.9767/bcrec.15.3.8425.853-860
  22. Bhargavi, K., Shyamala, P., Padma, M., Nagalakshmi, K.V. (2021). Kinetic Study of SN2 Reaction between ParanitrophenylBenzoate and Hydrazine in the Presence of CTABReverse Micelles. Bulletin of Chemical Reaction Engineering & Catalysis, 16(4), 744-751. DOI: 10.9767/bcrec.16.4.11036.744-751
  23. Sadhana, S., Das, S.P., Patnaik, A.K. (2012). Kinetics and Mechanism of Oxidation of L-Ascorbic Acid by Pt(IV)(aq) in Aqueous Hydrochloric Acid Medium. Advances in Physical Chemistry, 2012, 143734. DOI: 10.1155/2012/143734
  24. Kelemu, L., Sargeson, A.M., Elding, L.I., (2000). Kinetics and mechanism for reduction of oral anticancer platinum (IV) dicarboxylate compounds by L-ascorbate ions. Journal of Chemical Society, Dalton Transactions, 7, 1167-1172. DOI: 10.1039/A909484I
  25. Hayakawa, K., Minami, S., Nakamura, S. (1973). Kinetics of the Oxidation of Ascorbic Acid by the Copper (II) Ion in an Acetate Buffer Solution, Bulletin of Chemical Society of Japan, 46, 2788-2791. DOI: 10.1246/bcsj.46.2788
  26. Sarah, M., Ogren, P.J. (1999). Kinetics of Methylene Blue Reduction by Ascorbic Acid, Journal of Chemical Education, 76, 970-973. DOI: 10.1021/ed076p970

Last update:

No citation recorded.

Last update:

No citation recorded.