skip to main content

The Production of Green Diesel Rich Pentadecane (C15) from Catalytic Hydrodeoxygenation of Waste Cooking Oil using Ni/Al2O3-ZrO2 and Ni/SiO2-ZrO2

1Chemistry Department, Faculty of Science, Brawijaya University, Malang, 65145, Indonesia

2Synthesis and Catalysis of Natural Product Research Group, Faculty of Science, Brawijaya University, Jl. Veteran, Malang, 65145, Indonesia

3Chemistry Unit, Division of Physical & Natural Sciences, School of Arts & Sciences, University of The Gambia, Gambia

Received: 6 Nov 2021; Revised: 1 Dec 2021; Accepted: 2 Dec 2021; Available online: 15 Dec 2021; Published: 30 Mar 2022.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2021 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image

Hydrodeoxygenation (HDO) is applied in fuel processing technology to convert bio-oils to green diesel with metal-based catalysts. The major challenges to this process are feedstock, catalyst preparation, and the production of oxygen-free diesel fuel. In this study, we aimed to synthesize Ni catalysts supported on silica-zirconia and alumina-zirconia binary oxides and evaluated their catalytic activity for waste cooking oil (WCO) hydrodeoxygenation to green diesel. Ni/Al2O3-ZrO2 and Ni/SiO2-ZrO2 were synthesized by wet-impregnation and hydrodeoxygenation of WCO was done using a modified batch reactor. The catalysts were characterized using X-ray diffraction (XRD), X-ray fluorescence (XRF), and scanning electron microscopy - energy dispersive X-ray spectroscopy (SEM-EDS), and N2 isotherm adsorption-desorption analysis. Gas chromatography - mass spectrometry (GC-MS) analysis showed the formation of hydrocarbon framework n-C15 generated from the use of Ni/Al2O3-ZrO2 with the selectivity of 68.97% after a 2 h reaction. Prolonged reaction into 4 h, decreased the selectivity to 58.69%. Ni/SiO2-ZrO2 catalyst at 2 h showed selectivity of 55.39% to n-C15. Conversely, it was observed that the reaction for 4 h increased selectivity to 65.13%. Overall, Ni/Al2O3-ZrO2 and Ni/SiO2-ZrO2 catalysts produced oxygen-free green diesel range (n-C14-C18) enriched with n-C15 hydrocarbon. Reaction time influenced the selectivity to n-C15 hydrocarbon. Both catalysts showed promising hydrodeoxygenation activity via the hydrodecarboxylation pathway. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (


Fulltext View|Download
Keywords: hydrodeoxygenation; waste cooking oil; green diesel; alumina; zirconia; silica; Ni/Al2O3-ZrO2; Ni/SiO2-ZrO2
Funding: KEMENRISTEKDIKTI under contract PUPT No: 054/SP2H/LT/DPRM/IV/2018

Article Metrics:

  1. Ebadian, M., van Dyk, S., McMillan, J.D., Saddler, J. (2020). Biofuels policies that have encouraged their production and use: An international perspective. Energy Policy, 147, 111906. DOI: 10.1016/j.enpol.2020.111906
  2. Dolah, R., Karnik, R., Hamdan, H. (2021). A Comprehensive Review on Biofuels from Oil Palm Empty Bunch (EFB): Current Status, Potential, Barriers and Way Forward. Sustainability, 13, 10210. DOI: 10.3390/su131810210p
  3. Awogbemi, O., Kallon, D.V.V., Onuh, E.I., Aigbodion, V.S. (2021). An Overview of the Classification, Production, and Utilization of Biofuels for Internal Combustion Engine Applications. Energies, 14(18), 5687. DOI: 10.3390/en14185687
  4. Ooi, X.Y., Gao, W., Ong, H.C., Lee, H.V., Juan, J.C., Chen, W.H., Lee, K.T. (2019). Overview on catalytic deoxygenation for biofuel synthesis using metal oxide supported catalysts. Renewable and Sustainable Energy Reviews, 112, 834–852. DOI: 10.1016/j.rser.2019.06.031
  5. Gamal, M.S., Asikin-Mijan, N. Khalit, W.N. A.W., Arumugam, M., Izham, S.M., Taufiq-Yap, Y.H. (2020). Effective catalytic deoxygenation of palm fatty acid distillate for green diesel production under hydrogen-free atmosphere over bimetallic catalyst CoMo supported on activated carbon. Fuel Processing Technology, 208, 106519. DOI: 10.1016/j.fuproc.2020.106519
  6. Khodadadi, M.R., Malpartida, I., Tsang, C.W., Lin, C.S.K., Len, C. (2020). Recent advances on the catalytic conversion of waste cooking oil. Molecular Catalysis, 494, 111128. DOI: 10.1016/j.mcat.2020.111128
  7. Kamaruzaman, M.F., Taufiq-Yap, Y.H., Derawi, D. (2020). Green diesel production from palm fatty acid distillate over SBA-15-supported nickel, cobalt, and nickel/cobalt catalysts. Biomass and Bioenergy, 134, 105476. DOI: 10.1016/j.biombioe.2020.105476
  8. Foo, W.H., Chia, W.Y., Tang, D.Y.Y., Koay, S.S.N., Lim, S.S., Chew, K.W. (2021). The conundrum of waste cooking oil: Transforming hazard into energy. Journal of Hazardous Materials, 417, 126129. DOI: 10.1016/j.jhazmat.2021.126129
  9. Perez-Cisneros, E.S., Sales-Cruz, M., Lobo-Oehmichen, R., Viveros-García, T. (2017). A reactive distillation process for co-hydrotreating of non-edible vegetable oils and petro-diesel blends to produce green diesel fuel. Computers & Chemical Engineering, 105, 105–122. DOI: 10.1016/j.compchemeng.2017.01.018
  10. Ding, S., Li, F., Li, X., Yu, H., Song, C., Xiong, D., Lin, H. (2021). Catalytic hydrodeoxygenation of waste cooking oil and stearic acid over reduced nickel-based catalysts. Catalysis Communications, 149, 106235. DOI: 10.1016/j.catcom.2020.106235
  11. Li, Z., Huang, Z., Ding, S., Li, F., Wang, Z., Lin, H., Chen, C. (2018). Catalytic conversion of waste cooking oil to fuel oil: Catalyst design and effect of solvent. Energy, 157, 270–277. DOI: 10.1016/
  12. Chen, S., Zhou, G., Miao, C. (2019). Green and renewable bio-diesel produce from oil hydrodeoxygenation: Strategies for catalyst development and mechanism. Renewable and Sustainable Energy Reviews, 101, 568–589. DOI: 10.1016/j.rser.2018.11.027
  13. Zhang, H., Lin, H., Wang, W., Zheng, Y., Hu, P. (2014). Hydroprocessing of waste cooking oil over a dispersed nanocatalyst: Kinetics study and temperature effect. Applied Catalysis B: Environmental, 150–151, 238–248. DOI: 10.1016/j.apcatb.2013.12.006
  14. Arun, N., Sharma, R.V., Dalai, A.K. (2015). Green diesel synthesis by hydrodeoxygenation of bio-based feedstocks: Strategies for catalyst design and development. Renewable and Sustainable Energy Reviews, 48, 240–255. DOI: 10.1016/j.rser.2015.03.074
  15. Oh, S., Lee, J.H., Choi, I.-G., Choi, J.W. (2020). Enhancement of bio-oil hydrodeoxygenation activity over Ni-based bimetallic catalysts supported on SBA-15. Renewable Energy, 149, 1–10. DOI: 10.1016/j.renene.2019.12.027
  16. Ameen, M., Azizan, M.T., Ramli, A., Yusup, S., Alnarabiji, M.S. (2019). Catalytic hydrodeoxygenation of rubber seed oil over sonochemically synthesized Ni-Mo/γ-Al2O3 catalyst for green diesel production. Ultrasonics Sonochemistry, 51, 90–102. DOI: 10.1016/j.ultsonch.2018.10.011
  17. Xing, S., Liu, Y., Liu, X., Li, M., Fu, J., Liu, P., Lv, P., Wang, Z. (2020). Solvent-free hydrodeoxygenation of bio-lipids into renewable alkanes over NiW bimetallic catalyst under mild conditions. Applied Catalysis B: Environmental, 269, 118718. DOI: 10.1016/j.apcatb.2020.118718
  18. Shu, R., Lin, B., Wang, C., Zhang, J., Cheng, Z., Chen, Y. (2019). Upgrading phenolic compounds and bio-oil through hydrodeoxygenation using highly dispersed Pt/TiO2 catalyst. Fuel, 239, 1083–1090. DOI: 10.1016/j.fuel.2018.11.107
  19. Ulfa, S.M., Prihartini, D., Taufiq, A. (2019). Structural Characterization of Ni/ZrO2/SiO2 Nanocomposites Prepared by Wet Impregnation Route. IOP Conf. Ser.: Mater. Sci. Eng., 515, 012014. DOI: 10.1088/1757-899X/515/1/012014
  20. Sowe, M.S., Masruri, M., Ulfa, S.M. (2019). Synthesis of Ni Catalyst Supported on SiO2-ZrO2 Binary Oxide for Hydrodeoxygenation of Phenol. IOP Conf. Ser.: Mater. Sci. Eng., 546, 072007. DOI: 10.1088/1757-899X/546/7/072007
  21. Lestari, A.R., Suratmo, S., Ulfa, S.M. (2019). Effect of Support on the Hydrodeoxygenation of Phenol using Ni-based Metal Catalysts: Ni/SiO2, Ni/ZrO2, and Ni/Al2O3. IOP Conf. Ser.: Mater. Sci. Eng., 546, 072004. DOI: 10.1088/1757-899X/546/7/072004
  22. Li, F., Ding, S., Wang, Z., Zhixia, Li., Li, L., Gao, C., Zhong, Z., Lin, H., Chen, C., (2018). Production of light olefins from catalytic cracking bio-oil model compounds over La2O3-modified ZSM-5 zeolite. Energy & Fuels, 32(5), 5910–5922 . DOI: 10.1021/acs.energyfuels.7b04150
  23. Banerjee, A., Chakraborty, R., (2009). Parametric sensitivity in transesterification of waste cooking oil for biodiesel production—A review. Resources, Conservation and Recycling, 53(9), 490–497. DOI: 10.1016/j.resconrec.2009.04.003
  24. Ulfa, S.M., Ohorella, R.F., Astutik C.W. (2018). Sequential Condensation and Hydrodeoxygenation Reaction of Furfural-Acetone Adduct over Mix Catalysts Ni/SiO2 and Cu/SiO2 in Water,” Indones. J. Chem., 18(2), 250. DOI: 10.22146/ijc.26736
  25. Ulfa, S.M., Pramesti, I.N., Mustafidah, H. (2018). One-Step Condensation and Hydrogenation of Furfural-Acetone Using Mixed and Single Catalyst Based on Ni/M-Oxide [M=Al; Mg]. IOP Conf. Ser.: Mater. Sci. Eng., 299, 012069. DOI: 10.1088/1757-899X/299/1/012069
  26. Xie, Z., Chen, B., Wu, H., Liu, M., Liu, H., Zhang, J., Yang, G., Han, B. (2019). Highly efficient hydrogenation of levulinic acid into 2-methyl tetrahydrofuran over Ni–Cu/Al2O3–ZrO2 bifunctional catalysts. Green Chem., 21, 3, 606–613. DOI: 10.1039/C8GC02914H
  27. Zitouni, A., Bachir, R., Bendedouche, W., Bedrane, S. (2021). Production of bio-jet fuel range hydrocarbons from catalytic HDO of biobased difurfurilydene acetone over Ni/SiO2-ZrO2 catalysts. Fuel, 297, 120783. DOI: 10.1016/j.fuel.2021.120783
  28. Fertal, D.R., Monai, M., Proano, L., Bukhovko, M.P., Park, J., Ding, Y., Weckhuysen, B.M., Banerjee, A.C. (2021). Calcination temperature effects on Pd/alumina catalysts: Particle size, surface species, and activity in methane combustion. Catalysis Today, 382, 120-129. DOI: 10.1016/j.cattod.2021.08.005
  29. Cychosz, K.A., Thommes, M. (2018). Progress in the Physisorption Characterization of Nanoporous Gas Storage Materials. Engineering, 4, 559-566. DOI: 10.1016/j.eng.2018.06.001
  30. Ulfa, S.M., Prihartini, D., Mahfud, A., Munandar, R., Pramesti, I.N. (2019). Hydrodeoxygenation of furfural-acetone condensation adduct over alumina-zirconia and silica-zirconia supported nickel catalysts. IOP Conf. Ser.: Mater. Sci. Eng., 509, 012132. DOI: 10.1088/1757-899X/509/1/012132
  31. Zhang, X., Zhang, Q., Wang, T., Ma, L., Yu, Y., Chen, L., (2013). Hydrodeoxygenation of lignin-derived phenolic compounds to hydrocarbons over Ni/SiO2–ZrO2 catalysts. Bioresource Technology, 134, 73–80. DOI: 10.1016/j.biortech.2013.02.039
  32. Gobora, H.M., Hassan, S.A. (2009). A Comparative Study of Surface Characteristics of Nickel Supported on Silica Gel, γ-Alumina, Aluminosilicate. Petroleum Science and Technology, 27(14), 1555–1571. DOI: 10.1080/10916460802608677
  33. Toba, M., Abe, Y., Kuramochi, H., Osako, M., Mochizuki, T., Yoshimura, Y. (2011). Hydrodeoxygenation of waste vegetable oil over sulfide catalysts. Catalysis Today, 164(1), 533–537. DOI: 10.1016/j.cattod.2010.11.049
  34. Lycourghiotis, S., Kordouli, E., Sygellou, L., Bourikas, K., Kordulis, C. (2019). Nickel catalysts supported on palygorskite for transformation of waste cooking oils into green diesel. Applied Catalysis B: Environmental, 259, 118059. DOI: 10.1016/j.apcatb.2019.118059
  35. Li, X., Luo, X., Jin, Y., Lib, J., Zhanga, H., Zhanga, A., Xie, J. (2018). Heterogeneous sulfur-free hydrodeoxygenation catalysts for selectively upgrading the renewable bio-oils to second generation biofuels, Renewable and Sustainable Energy Reviews, 82, 3762–3797. DOI: 10.1016/j.rser.2017.10.091
  36. Wu, S.-K., Lai, P.-C., Lin, Y.-C., Wan, H.-P., Lee, H.-T., Chang, Y.-H. (2013). Atmospheric Hydrodeoxygenation of Guaiacol over Alumina-, Zirconia-, and Silica-Supported Nickel Phosphide Catalysts,” ACS Sustainable Chem. Eng., 1(3), 349–358. DOI: 10.1021/sc300157d
  37. Hellinger, M., Carvalho, H.W.P., Baier, S., Wang, D., Kleist, W., Grunwaldt, J.-D. (2015). Catalytic hydrodeoxygenation of guaiacol over platinum supported on metal oxides and zeolites. Applied Catalysis A: General, 490, 181–192. DOI: 10.1016/j.apcata.2014.10.043
  38. Popov, A., Kondratieva, E., Mariey, L., Goupil, J.M., El Fallah, J., Gilson, J.-P., Travert, A., Maugé, F. (2013). Bio-oil hydrodeoxygenation: Adsorption of phenolic compounds on sulfided (Co)Mo catalysts. Journal of Catalysis, 297, 176–186. DOI: 10.1016/j.jcat.2012.10.005
  39. Sánchez-Cárdenas, M., Medina-Valtierra, J., Kamaraj, S.-K., Ramírez, R.-R.-M., Sánchez-Olmos, L.A. (2016). Effect of Size and Distribution of Ni Nanoparticles on γ-Al2O3 in Oleic Acid Hydrodeoxygenation to Produce n-Alkanes. Catalysts, 6, 156. DOI: 10.3390/catal6100156
  40. Monnier, J., Sulimma, H., Dalai, A., Caravaggio, G. (2010). Hydrodeoxygenation of oleic acid and canola oil over alumina-supported metal nitrides. Applied Catalysis A: General, 382(2), 176–180. DOI: 10.1016/j.apcata.2010.04.035

Last update:

No citation recorded.

Last update:

No citation recorded.