skip to main content

French Fries-Like Bismuth Oxide: Physicochemical Properties, Electrical Conductivity and Photocatalytic Activity

1Chemistry Department, Faculty of Natural Sciences and Mathematics, Diponegoro University, Jln. Prof. Soedarto, Tembalang, Semarang, Indonesia

2Physics Department, Faculty of Natural Sciences and Mathematics, Diponegoro University, Jln. Prof. Soedarto, Tembalang, Semarang, Indonesia

Received: 22 Oct 2021; Revised: 6 Dec 2021; Accepted: 7 Dec 2021; Available online: 15 Dec 2021; Published: 30 Mar 2022.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2021 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image
Abstract

Bismuth oxide synthesis using hydrothermal method has been conducted. This study aims to examine the effect of the hydrothermal reaction time on product characteristics and photocatalytic activity in degrading methyl orange dye. Bismuth oxide synthesis was initiated by dissolving bismuth nitrate pentahydrate (Bi(NO3)3.5H2O) and Na2SO4 in a distilled water and added NaOH gradually. The solution formed was transferred into a Teflon-lined autoclave and heated at 120 °C with time variations of 8–16 h. The formation of bismuth oxide was indicated by the vibrations of the Bi−O−Bi and Bi−O groups and the crystal structure consisting of a-Bi2O3, β-Bi2O3, and g-Bi2O3. In addition, the highest photocatalytic activity can be examined through several factors, such as: content of Bi−O−Bi and Bi−OH groups, crystal structure, band gap values, morphology, and surface area, acquired as a result of the effect of hydrothermal reaction time. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Fulltext View|Download
Keywords: Bismuth Oxide; Semiconductor; Hydrothermal; Photocatalysis
Funding: Diponegoro University under contract Riset Publikasi Internasional (RPI) No 185-81/UN7.6.1/PP/2021

Article Metrics:

  1. Ameta, R., Solanki, M.S., Benjamin, S., Ameta, S.C. (2018). Chapter 6 - Photocatalysis, in: Adv. Oxid. Process. Waste Water Treat
  2. Li, Y., Trujillo, M.A., Fu, E., Patterson, B., Fei, L., Xu, Y., Deng, S., Smirnov, S., Luo, H. (2013). Bismuth oxide: A new lithium-ion battery anode. J. Mater. Chem. A., 1 (39), 12123-12127. DOI: 10.1039/c3ta12655b
  3. Jakubec, P., Malina, O., Tuček, J., Medřík, I., Medříková, Z., Slovák, P., Kašlík, J., Zbořil, R. (2019). Crystal Structure- and Morphology-Driven Electrochemistry of Iron Oxide Nanoparticles in Hydrogen Peroxide Detection. Adv. Mater. Interfaces., 6(3), 1801549. DOI: 10.1002/admi.201801549
  4. Astuti, Y., Amri, D., Widodo, D.S., Widiyandari, H., Balgis, R., Ogi, T. (2020). Effect of fuels on the physicochemical properties and photocatalytic activity of bismuth oxide, synthesized using solution combustion method. Int. J. Technol., 11(1), 26-36. DOI: 10.14716/ijtech.v11i1.3342
  5. Astuti, Y., Andianingrum, R., Arnelli, A., Haris, A., Darmawan, A. (2020). The Role of H2C2O4 and Na2CO3 as Precipitating Agents on the Physichochemical Properties and Photocatalytic Activity of Bismuth Oxide. Open Chem., 18(1), 129-137. DOI: 10.1515/chem-2020-0013
  6. Astuti, Y., Listyani, B.M., Suyati, L., Darmawan, A. (2021). Bismuth oxide prepared by sol-gel method: Variation of physicochemical characteristics and photocatalytic activity due to difference in calcination temperature. Indonesian J. Chem., 21(1), 108-117. DOI: 10.22146/ijc.53144
  7. Pugazhenthiran, N., Sathishkumar, P., Murugesan, S., Anandan, S. (2011). Effective degradation of acid orange 10 by catalytic ozonation in the presence of Au-Bi2O3 nanoparticles. Chem. Eng. J., 168(3), 1227-1233. DOI: 10.1016/j.cej.2011.02.020
  8. Zhou, L., Wang, W., Xu, H., Sun, S., Shang, M. (2009). Bi2O3 hierarchical nanostructures: Controllable synthesis, growth mechanism, and their application in photocatalysis. Chem. - A Eur. J., 15(7), 1776-1782. DOI: 10.1002/chem.200801234
  9. Iyyapushpam, S., Nishanthi, S.T., Pathinettam Padiyan, D. (2014). Enhanced photocatalytic degradation of methyl orange by gamma Bi2O3 and its kinetics. J. Alloys Compd., 601(2014), 85-87. DOI: 10.1016/j.jallcom.2014.02.142
  10. Moyseowicz, A., Moyseowicz, A. (2020). Tailoring the morphology, crystalline structure, and electrochemical properties of nanostructured Bi2S3 using various solvent mixtures. Mater. Renew. Sustain. Energy., 9 (2020), 1-10. DOI: 10.1007/s40243-020-00171-9
  11. Hernandez-Delgadillo, R., Velasco-Arias, D., Martinez-Sanmiguel, J.J., Diaz, D., Zumeta-Dube, I., Arevalo-Niño, K., Cabral-Romero, C. (2013). Bismuth oxide aqueous colloidal nanoparticles inhibit Candida albicans growth and biofilm formation. Int. J. Nanomedicine., 8 (2013), 1645-1652. DOI: 10.2147/IJN.S38708
  12. Astuti, Y., Fauziyah, A., Widiyandari, H., Widodo, D.S. (2019). Studying impact of citric acid-bismuth nitrate pentahydrate ratio on photocatalytic activity of bismuth oxide prepared by solution combustion method. Rasayan J. Chem., 12(4), 2210-2217. DOI: 10.31788/RJC.2019.1245323
  13. Astuti, Y., Elesta, P.P., Widodo, D.S., Widiyandari, H., Balgis, R. (2020). Hydrazine and urea fueled-solution combustion method for Bi2O3 synthesis: Characterization of physicochemical properties and photocatalytic activity. Bull. Chem. React. Eng. Catal., 15(1), 104–111. DOI: 10.9767/bcrec.15.1.5483.104-111
  14. Wu, C., Shen, L., Huang, Q., Zhang, Y.C. (2011). Hydrothermal synthesis and characterization of Bi2O3 nanowires. Mater. Lett., 65 (7), 1134-1136. DOI: 10.1016/j.matlet.2011.01.021
  15. Zulkifli, Z.A., Razak, K.A., Rahman, W.N.W.A., Abidin, S.Z. (2018). Synthesis and Characterisation of Bismuth Oxide Nanoparticles using Hydrothermal Method: The Effect of Reactant Concentrations and application in radiotherapy. J. Phys. Conf. Ser., 1082, 012103-1-6. DOI: 10.1088/1742-6596/1082/1/012103
  16. Zulkifli, Z.A., Razak, K.A., Rahman, W.N.W.A. (2018). The effect of reaction temperature on the particle size of bismuth oxide nanoparticles synthesized via hydrothermal method. AIP Conf. Proc., 1958, 020007-1-020007-1-7. DOI: 10.1063/1.5034538
  17. Zulkifli, Z.A., Razak, K.A., Rahman, W.N.W.A. (2017). Effect of hydrothermal reaction time on size of bismuth oxide nanoparticles synthesized via hydrothermal method. AIP Conf. Proc., 1901, 020011-1-020011-6. DOI: 10.1063/1.5010448
  18. Yang, Q., Li, Y., Yin, Q., Wang, P., Cheng, Y.B. (2002). Hydrothermal synthesis of bismuth oxide needles. Mater. Lett., 55(1-2), 46-49. DOI: 10.1016/S0167-577X(01)00617-6
  19. Behzad, M., Sabaghian, M., Jahromi, H.S. (2015). Alfa- Bismuth(III)oxide catalyzed Biginelli reactions using experimentally designed optimized condition. J. Adv. Mater. Process., 3(4), 61–69. Retrieved from: http://jmatpro.iaun.ac.ir/article_562063.html
  20. Astuti, Y., Arnelli, A., Pardoyo, P., Fauziyah, A., Nurhayati, S., Wulansari, A.D., Andianingrum, R., Widiyandari, H., Bhaduri, G.A. (2017). Studying impact of different precipitating agents on crystal structure, morphology and photocatalytic activity of bismuth oxide. Bull. Chem. React. Eng. Catal., 12(3), 478–484. DOI: 10.9767/bcrec.12.3.1144.478-484
  21. Astuti, Y., Anggraeni, D., Darmawan, A. (2020). Photocatalytic Performance of Bismuth Oxide Prepared by Citric Acid-Fueled Solution Combustion on Decolorisation of Organic Dye Molecules. IOP Conf. Ser. Mater. Sci. Eng., 833, 012061-1-6. DOI: 10.1088/1757-899X/833/1/012061
  22. Khataee, A., Alidokht, L., Hassani, A., Karaca, S. (2013). Response surface analysis of removal of a textile dye by a Turkish coal powder. Adv. Environ. Res., 2(4), 291-308. DOI: 10.12989/aer.2013.2.4.291
  23. Hassani, A., Faraji, M., Eghbali, P. (2020). Facile fabrication of mpg-C3N4/Ag/ZnO nanowires/Zn photocatalyst plates for photodegradation of dye pollutant. J. Photochem. Photobiol. A., 400(2020), 112665. DOI: 10.1016/j.jphotochem.2020.112665
  24. Hassani, A., Krishnan, S., Scaria, J., Eghbali, P., Nidheesh, P.V. (2021). Z-scheme photocatalysts for visible-light-driven pollutants degradation: A review on recent advancements. Curr. Opin. Solid State Mater. Sci., 25(5), 100941-1-25. DOI: 10.1016/j.cossms.2021.100941
  25. Motlagh, P.Y., Khataee, A., Hassani, A., Rad, T.S. (2020). ZnFe-LDH/GO nanocomposite coated on the glass support as a highly efficient catalyst for visible light photodegradation of an emerging pollutant. J. Mol. Liq., 302(2020), 112532-1-14. DOI: 10.1016/j.molliq.2020.112532
  26. Helal, A., Harraz, F.A., Ismail, A.A., Sami, T.M., Ibrahim, I.A. (2016). Controlled synthesis of bismuth sulfide nanorods by hydrothermal method and their photocatalytic activity. Mater. Des., 102(2016), 202-212. DOI: 10.1016/j.matdes.2016.04.043
  27. Li, W. (2006). Facile synthesis of monodisperse Bi2O3 nanoparticles. Mater. Chem. Phys., 99 (1), 174-180. DOI: 10.1016/j.matchemphys.2005.11.007
  28. Bartonickova, E., Cihlar, J., Castkova, K. (2007). Microwave-assisted synthesis of bismuth oxide. Process. Appl. Ceram., 1(1-2), 29-33. DOI: 10.2298/pac0702029b
  29. Colthup, N. (2012). Introduction to Infrared and Raman Spectroscopy - Norman Colthup - Google Books, Deliv. Nanoparticles
  30. Daniyati, R., Zharvan, V., Pramono, Y.H. (2015). Penentuan Energi Celah Pita Optik Film TiO2 Menggunakan Metode Tauc Plot. Pros. Semin. Sains dan Teknol., 1, 1-5
  31. Iyyapushpam, S., Nishanthi, S.T., Padiyan, D.P. (2015). Synthesis of β-Bi2O3 towards the application of photocatalytic degradation of methyl orange and its instability. J. Phys. Chem. Solids., 81, 74-78. DOI: 10.1016/j.jpcs.2015.02.005
  32. Mahmoud, W.E., Al-Ghamdi, A.A. (2010). Electrical and mechanical properties of bismuth oxide nanowire/poly(vinyl acetate). J. Appl. Polym. Sci., 118(3), 1598-1605. DOI: 10.1002/app.32523
  33. Goncharova, A.S., Napolskii, K.S., Skryabina, O.V., Stolyarov, V.S., Levin, E.E., Egorov, S.V., Eliseev, A.A., Kasumov, Y.A., Ryazanov, V.V., Tsirlina, G.A. (2020). Bismuth nanowires: Electrochemical fabrication, structural features, and transport properties. Phys. Chem. Chem. Phys., 22(26), 14953-14964. DOI: 10.1039/d0cp01111h
  34. Astuti, Y., Fauziyah, A., Nurhayati, S., Wulansari, A.D., Andianingrum, R., Hakim, A.R., Bhaduri, G. (2016). Synthesis of α-Bismuth oxide using solution combustion method and its photocatalytic properties. IOP Conf. Ser. Mater. Sci. Eng., 107 (2016), 012006-1-7. DOI: 10.1088/1757-899X/107/1/012006
  35. Licciulli, A., Lisi, D. (2002). Self-cleaning glass, Univ. Degli Stud. Di Lecce
  36. Liu, X., Deng, H., Yao, W., Jiang, Q., Shen, J. (2015). Preparation and photocatalytic activity of Y-doped Bi2O3. J. Alloys Compd., 651 (2015), 135-142. DOI: 10.1016/j.jallcom.2015.08.068
  37. Wang, Q., Hui, J., Yang, L., Huang, H., Cai, Y., Yin, S., Ding, Y. (2014). Enhanced photocatalytic performance of Bi2O3/H-ZSM-5 composite for rhodamine B degradation under UV light irradiation. Appl. Surf. Sci., 289, 224–229. DOI: 10.1016/j.apsusc.2013.10.139

Last update:

No citation recorded.

Last update:

No citation recorded.