skip to main content

The Ni Catalyst Supported on the FSP-made Transition Metal (Co, Mn, Cu or Zn) Doped La2O3 Material for the Dry Reforming of Methane

Department of Chemical Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom 73000, Thailand

Received: 15 Oct 2021; Revised: 21 Nov 2021; Accepted: 22 Nov 2021; Available online: 24 Nov 2021; Published: 30 Mar 2022.
Editor(s): Bunjerd Jongsomjit
Open Access Copyright (c) 2021 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image
Abstract

The transition metal (Co, Mn, Cu or Zn) doped La2O3 material was prepared by flame spray pyrolysis (FSP) technique. The 2 wt.% Ni catalyst supported on this material was characterized by XRD, N2 physisorption, TPR, H2 chemisorption and TGA, and evaluated by the dry reforming of methane (DRM). The perovskite structure was certainly formed when either Co or Mn was introduced. The Cu can generate the La2CuO4 spinel phase while the Zn showed a mixed phase of La2O3, ZnO and La(OH)3. The Ni/Co-La2O3 catalyst was more active for the DRM because of high amount of active dual sites of Ni and Co metals dispersed on the catalyst surface. The formation of La2O2CO3 during the reaction can inhibit the coke formation. The cooperation of La2O2CO3 and MnO phases in the Ni/Mn-La2O3 catalyst was promotional effect to decrease carbon deposits on the catalyst surface. The partial substitution of Co for Mn with a small content of Mn can enhance the catalytic activity and the product yield. The Ni/Mn0.05Co0.95-La2O3 catalyst showed the highest CH4 conversion, H2 yield and H2/CO ratio. The Mn inserted into the perovskite structure of LaCoO3 was an important player to change oxygen mobility within the crystal lattice to maintain a high performance of the catalyst. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Fulltext View|Download
Keywords: Ni/Co-La2O3; Ni/Mn-La2O3 Flame spray pyrolysis; Perovskite; Dry reforming of methane
Funding: Department of Chemical Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University

Article Metrics:

  1. Willard, D.A., Donders, T.H., Reichgelt, T., Greenwood, D.R., Sangiorgi, F., Peterse, F., Nierop, K.G., Frieling, J., Schouten, S., Sluijs, A. (2019). Arctic vegetation, temperature, and hydrology during Early Eocene transient global warming events. Global and Planetary Change, 178, 139-152. DOI: 10.1016/j.gloplacha.2019.04.012
  2. Osazuwa, O.U., Setiabudi, H.D., Rasid, R.A., Cheng, C.K. (2017). Syngas production via methane dry reforming. A novel application of SmCoO3 perovskite catalyst. Journal of Natural Gas Science and Engineering, 37, 435-448. DOI: 10.1016/j.jngse.2016.11.060
  3. Sutthiumporn, K., Maneerung, T., Kathiraser, Y., Kawi, S. (2012). CO2 dry-reforming of methane over La0.8Sr0.2Ni0.8M0.2O3 perovskite (M=Bi, Co, Cr, Cu, Fe): Roles of lattice oxygen on C-H activation and carbon suppression. International Journal of Hydrogen Energy, 37, 11195-11207. DOI: 10.1016/j.ijhydene.2012.04.059
  4. Arora, S., Prasad, R. (2016). An overview on dry reforming of methane: strategies to reduce carbonaceous deactivation of catalysts. RSC Advances, 6, 108668-108688. DOI: 10.1039/C6RA20450C
  5. Aramouni, N.A.K., Touma, J.G., Tarboush, B.A., Zeaiter, J., Ahmad, M.N. (2018). Catalyst design for dry reforming of methane: analysis review. Renewable and Sustainable Energy Reviews, 82, 2570-2585. DOI: 10.1016/j.rser.2017.09.076
  6. Budiman, A.W., Song, S.-H., Chang, T.-S., Shin, C.-H., Choi, M.-J.( 2012). Dry reforming of methane over cobalt catalysts: a literature review of catalyst development. Catalysis Surveys from Asia, 16, 183-197. DOI: 10.1007/s10563-012-9143-2
  7. Kathiraser, Y., Oemar, U., Saw, E.T., Li, Z., Kawi, S. (2015). Kinetic and mechanistic aspects for CO2 reforming of methane over Ni based catalysts. Chemical Engineering Journal, 278, 62-78. DOI: 10.1016/j.cej.2014.11.143
  8. Dama, S., Ghodke, S.R., Bobade, R., Gurav, H.R., Chilukuri, S. (2018). Active and durable alkaline earth metal substituted perovskite catalysts for dry reforming of methane. Applied Catalysis B: Environmental, 224, 146-158. DOI: 10.1016/j.apcatb.2017.10.048
  9. Valderrama, G., de Navarro, C.U., Goldwasser, M.R. (2013). CO2 reforming of CH4 over Co–La-based perovskite-type catalyst precursors. Journal of Power Sources, 234, 31-37. DOI: 10.1016/j.jpowsour.2013.01.142
  10. Ay, H., Üner, D. (2015). Dry reforming of methane over CeO2 supported Ni, Co and Ni-Co catalysts. Applied Catalysis B: Environmental, 179, 128-138. DOI: 10.1016/j.apcatb.2015.05.013
  11. Royer, S., Duprez, D., Can, F., Courtois, X., Batiot-Dupeyrat, C., Laassiri, S., Alamdari, H. (2014). Perovskites as substitutes of noble metals for heterogeneous catalysis: dream or reality. Chemical Reviews, 114, 10292-10368. DOI: 10.1021/cr500032a
  12. Valderrama, G., Kiennemann, A., de Navarro, C.U., Goldwasser, M.R. (2018). LaNi1-xMnxO3 perovskite-type oxides as catalysts precursors for dry reforming of methane. Applied Catalysis A: General, 565, 26-33. DOI: 10.1016/j.apcata.2018.07.039
  13. Abasaeed, A.E., Al-Fatesh, A.S., Naeem, M.A., Ibrahim, A.A., Fakeeha, A.H. (2015). Catalytic performance of CeO2 and ZrO2 supported Co catalysts for hydrogen production via dry reforming of methane. International Journal of Hydrogen Energy, 40, 6818-6826. DOI: 10.1016/j.ijhydene.2015.03.152
  14. Lima, S., Assaf, J., Pena, M., Fierro, J. (2006). Structural features of La1-xCexNiO3 mixed oxides and performance for the dry reforming of methane. Applied Catalysis A, 311, 94-104. DOI: 10.1016/j.apcata.2006.06.010
  15. Rivas, I., Alvarez, J., Pietri, E., Pérez-Zurita, M.J., Goldwasser, M.R. (2010). Perovskite-type oxides in methane dry reforming: Effect of their incorporation into a mesoporous SBA-15 silica-host. Catalysis today, 149, 388-393. DOI: 10.1016/j.cattod.2009.05.028
  16. Sokolov, S., Kondratenko, E.V., Pohl, M.-M., Rodemerck, U. (2013). Effect of calcination conditions on time on-stream performance of Ni/La2O3-ZrO2 in low-temperature dry reforming of methane. International Journal of Hydrogen Energy, 38, 16121-16132. DOI: 10.1016/j.ijhydene.2013.10.013
  17. Nair, M.M., Kaliaguine, S., Kleitz, F. (2014). Nanocast LaNiO3 perovskites as precursors for the preparation of coke-resistant dry reforming catalysts. Acs Catalysis, 4, 3837-3846. DOI: 10.1021/cs500918c
  18. Titus, J., Goepel, M., Schunk, S., Wilde, N., Gläser, R. (2017). The role of acid/base properties in Ni/MgO-ZrO2–based catalysts for dry reforming of methane. Catalysis Communications, 100, 76-80. DOI: 10.1016/j.catcom.2017.06.027
  19. Albarazi, A., Gálvez, M.E., Da Costa, P. (2015). Synthesis strategies of ceria–zirconia doped Ni/SBA-15 catalysts for methane dry reforming. Catalysis Communications, 59, 108-112. DOI: 10.1016/j.catcom.2014.09.050
  20. Sokolov, S., Kondratenko, E.V., Pohl, M.-M., Barkschat, A., Rodemerck, U. (2012). Stable low-temperature dry reforming of methane over mesoporous La2O3-ZrO2 supported Ni catalyst. Applied Catalysis B: Environmental, 113, 19-30. DOI: 10.1016/j.apcatb.2011.09.035
  21. Al-Fatesh, A.S., Naeem, M.A., Fakeeha, A.H., Abasaeed, A.E. (2014). Role of La2O3 as promoter and support in Ni/γ-Al2O3 catalysts for dry reforming of methane. Chinese Journal of Chemical Engineering, 22, 28-37. DOI: 10.1016/S1004-9541(14)60029-X
  22. Pompeo, F., Nichio, N.N., González, M.G., Montes, M. (2005). Characterization of Ni/SiO2 and Ni/Li-SiO2 catalysts for methane dry reforming. Catalysis Today, 107, 856-862. DOI: 10.1016/j.cattod.2005.07.024
  23. Tsoukalou, A., Imtiaz, Q., Kim, S.M., Abdala, P.M., Yoon, S., Müller, C.R. (2016). Dry-reforming of methane over bimetallic Ni–M/La2O3 (M= Co, Fe): The effect of the rate of La2O2CO3 formation and phase stability on the catalytic activity and stability. Journal of Catalysis, 343, 208-214. DOI: 10.1016/j.jcat.2016.03.018
  24. Yan, X., DU, X.-h., Jing, L., Peng, W., Jie, Z., GE, F.-j., Jun, Z., Ming, S., ZHU, W.-y. (2019). A comparison of Al2O3 and SiO2 supported Ni-based catalysts in their performance for the dry reforming of methane. Journal of Fuel Chemistry and Technology, 47, 199-208. DOI: 10.1016/S1872-5813(19)30010-6
  25. Li, K., He, F., Yu, H., Wang, Y., Wu, Z. (2018). Theoretical study on the reaction mechanism of carbon dioxide reforming of methane on La and La2O3 modified Ni (1 1 1) surface. Journal of Catalysis, 364, 248-261. DOI: 10.1016/j.jcat.2018.05.026
  26. Zhu, Q., Cheng, H., Zou, X., Lu, X., Xu, Q., Zhou, Z. (2015). Synthesis, characterization, and catalytic performance of La0.6Sr0.4NixCo1-xO3 perovskite catalysts in dry reforming of coke oven gas. Chinese Journal of Catalysis, 36, 915-924. DOI: 1016/S1872-2067(14)60303-X
  27. Li, X., Li, D., Tian, H., Zeng, L., Zhao, Z.-J., Gong, J. (2017). Dry reforming of methane over Ni/La2O3 nanorod catalysts with stabilized Ni nanoparticles. Applied Catalysis B: Environmental, 202, 683-694. DOI: 10.1016/j.apcatb.2016.09.071
  28. Wang, H., Dong, X., Zhao, T., Yu, H., Li, M. (2019). Dry reforming of methane over bimetallic Ni-Co catalyst prepared from La (CoxNi1-x)0.5Fe0.5O3 perovskite precursor: Catalytic activity and coking resistance. Applied Catalysis B: Environmental, 245, 302-313. DOI: 10.1016/j.apcatb.2018.12.072
  29. de Caprariis, B., de Filippis, P., Palma, V., Petrullo, A., Ricca, A., Ruocco, C., Scarsella, M. (2016). Rh, Ru and Pt ternary perovskites type oxides BaZr(1-x)MexO3 for methane dry reforming. Applied Catalysis A: General, 517, 47-55. DOI: 10.1016/j.apcata.2016.02.029
  30. Nie, L., Wang, J., Tan, Q. (2017). In-situ preparation of macro/mesoporous NiO/LaNiO3 pervoskite composite with enhanced methane combustion performance. Catalysis Communications, 97, 1-4. DOI: 10.1016/j.catcom.2017.04.010
  31. Zhang, Y., Guo, S., Tian, Z., Zhao, Y., Hao, Y. (2019). Experimental investigation of steam reforming of methanol over La2CuO4/CuZnAl-oxides nanocatalysts. Applied Energy, 254, 113022. DOI: 10.1016/j.apenergy.2019.04.018
  32. Bobrova, L., Bobin, A., Mezentseva, N., Sadykov, V., Thybaut, J., Marin, G. (2016). Kinetic assessment of dry reforming of methane on Pt+Ni containing composite of fluorite-like structure. Applied Catalysis B: Environmental, 182, 513-524. DOI: 10.1016/j.apcatb.2015.09.049
  33. Oliveira, Â.A., Medeiros, R.L., Figueredo, G.P., Macedo, H.P., Braga, R.M., Maziviero, F.V., Melo, M.A., Melo, D.M., Vieira, M.M. (2018). One-step synthesis of LaNiO3 with chitosan for dry reforming of methane. International Journal of Hydrogen Energy, 43, 9696-9704. DOI: 10.1016/j.ijhydene.2018.03.212
  34. Zheng, X.-G., Tan, S.-Y., Dong, L.-C., Li, S.-B., Chen, H.-M., Wei, S.-A. (2015). Experimental and kinetic investigation of the plasma catalytic dry reforming of methane over perovskite LaNiO3 nanoparticles. Fuel Processing Technology, 137, 250-258. DOI: 10.1016/j.fuproc.2015.02.003
  35. Pereñíguez, R., González-DelaCruz, V.M., Holgado, J.P., Caballero, A. (2010). Synthesis and characterization of a LaNiO3 perovskite as precursor for methane reforming reactions catalysts. Applied Catalysis B: Environmental, 93, 346-353. DOI: 10.1016/j.apcatb.2009.09.040
  36. Chiarello, G.L., Rossetti, I., Forni, L. (2005). Flame-spray pyrolysis preparation of perovskites for methane catalytic combustion. Journal of Catalysis, 236, 251-261. DOI: 10.1016/j.jcat.2005.10.003
  37. Levy, M. (2005). Chapter 3: Perovskite Perfect Lattice. Crystal Structure and Defect Property Predictions in Ceramic Materials, 79-114
  38. Taran, O.P., Ayusheev, A.B., Ogorodnikova, O.L., Prosvirin, I.P., Isupova, L.A., Parmon, V.N. (2016). Perovskite-like catalysts LaBO3 (B= Cu, Fe, Mn, Co, Ni) for wet peroxide oxidation of phenol. Applied Catalysis B: Environmental, 180, 86-93. DOI: 10.1016/j.apcatb.2015.05.055
  39. Wu, Q., Zhao, L., Wu, M., Yao, W., Qi, M., Shi, X. (2014). Fabrication of nanofibrous A-or B-sites substituted LaCoO3 perovskites with macroscopic structures and their catalytic applications. Materials Research Bulletin, 51, 295-301. DOI: 10.1016/j.materresbull.2013.12.038
  40. Touahra, F., Rabahi, A., Chebout, R., Boudjemaa, A., Lerari, D., Sehailia, M., Halliche, D., Bachari, K. (2016). Enhanced catalytic behaviour of surface dispersed nickel on LaCuO3 perovskite in the production of syngas: an expedient approach to carbon resistance during CO2 reforming of methane. International Journal of Hydrogen Energy, 41, 2477-2486. DOI: 10.1016/j.ijhydene.2015.12.062
  41. Qin, W., Yuan, Z., Gao, H., Zhang, R., Meng, F. (2021). Perovskite-structured LaCoO3 modified ZnO gas sensor and investigation on its gas sensing mechanism by first principle. Sensors and Actuators B: Chemical, 341, 130015. DOI: 10.1016/j.snb.2021.130015
  42. Yin, X., Wang, S., Wang, B., Shen, L. (2021). Chemical looping steam methane reforming using Al doped LaMnO3+δ perovskites as oxygen carriers. International Journal of Hydrogen Energy, 46, 33375-33387. DOI: 10.1016/j.ijhydene.2021.07.192
  43. Huang, L., Bassir, M., Kaliaguine, S. (2007). Characters of perovskite-type LaCoO3 prepared by reactive grinding. Materials Chemistry and Physics, 101, 259-263. DOI: 10.1016/j.matchemphys.2006.08.008
  44. Wei, T., Jia, L., Zheng, H., Chi, B., Pu, J., Li, J. (2018). LaMnO3-based perovskite with in-situ exsolved Ni nanoparticles: a highly active, performance stable and coking resistant catalyst for CO2 dry reforming of CH4. Applied Catalysis A: General, 564, 199-207. DOI: 10.1016/j.apcata.2018.07.031
  45. Liu, G., Yue, R., Jia, Y., Ni, Y., Yang, J., Liu, H., Wang, Z., Wu, X., Chen, Y. (2013). Catalytic oxidation of benzene over Ce–Mn oxides synthesized by flame spray pyrolysis. Particuology, 11, 454-459. DOI: 10.1016/j.partic.2012.09.013
  46. Ghiasi, M., Delgado-Jaime, M.U., Malekzadeh, A., Wang, R.-P., Miedema, P.S., Beye, M., De Groot, F.M. (2016). Mn and Co Charge and Spin Evolutions in LaMn1–xCoxO3 Nanoparticles. The Journal of Physical Chemistry C, 120, 8167-8174. DOI: 10.1021/acs.jpcc.6b00949
  47. Sukumar, M., Kennedy, L.J., Vijaya, J.J., Al-Najar, B., Bououdina, M. (2018). Co2+ substituted La2CuO4/LaCoO3 perovskite nanocomposites: synthesis, properties and heterogeneous catalytic performance. New Journal of Chemistry, 42, 18128-18142. DOI: 10.1039/C8NJ04133D
  48. Singh, R.P., Arora, P., Nellaiappan, S., Shivakumara, C., Irusta, S., Paliwal, M., Sharma, S. (2019). Electrochemical insights into layered La2CuO4 perovskite: Active ionic copper for selective CO2 electroreduction at low overpotential. Electrochimica Acta, 326, 134952. DOI: 10.1016/j.electacta.2019.134952
  49. Moradi, G., Rahmanzadeh, M., Khosravian, F. (2014). The effects of partial substitution of Ni by Zn in LaNiO3 perovskite catalyst for methane dry reforming. Journal of CO2 Utilization, 6, 7-11. DOI: 10.1016/j.jcou.2014.02.001
  50. Sing, K.S. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and applied chemistry, 57, 603-619. DOI: 10.1351/pac198557040603
  51. Ross, J. (1988), Heterogenous Catalysis: Principles and Applications, GC Bond, in: Oxford Chemistry Series, 34, Clarendon Press, Oxford (1987), p. 176, Elsevier
  52. Jalali, R., Rezaei, M., Nematollahi, B., Baghalha, M. (2019). Preparation of Ni/MeAl2O4-MgAl2O4 (Me = Fe, Co, Ni, Cu, Zn, Mg) nanocatalysts for the syngas production via combined dry reforming and partial oxidation of methane. Renewable Energy, 149, 1053-1067. DOI: 10.1016/j.renene.2019.10.111
  53. Chaisuk, C., Boonpitak, P., Panpranot, J., Mekasuwandumrong, O. (2011). Effects of Co dopants and flame conditions on the formation of Co/ZrO2 nanoparticles by flame spray pyrolysis and their catalytic properties in CO hydrogenation. Catalysis Communications, 12, 917-922. DOI: 10.1016/j.catcom.2011.01.016
  54. Shejale, A.D., Yadav, G.D. (2019). Sustainable and selective hydrogen production by steam reforming of bio-based ethylene glycol: Design and development of Ni-Cu/mixed metal oxides using M (CeO2, La2O3, ZrO2)-MgO mixed oxides. Journal of Hydrogen Energy, 46(6), 4808-4826. DOI: 10.1016/j.ijhydene.2019.11.031
  55. Velasquez, M., Santamaria, A., Batiot-Dupeyrat, C. (2014). Selective conversion of glycerol to hydroxyacetone in gas phase over La2CuO4 catalyst. Applied Catalysis B: Environmental, 160, 606-613. DOI: 10.1016/j.apcatb.2014.06.006
  56. Donphai, W., Piriyawate, N., Witoon, T., Jantaratana, P., Varabuntoonvit, V., Chareonpanich, M. (2016). Effect of magnetic field on CO2 conversion over Cu-ZnO/ZrO2 catalyst in hydrogenation reaction. Journal of CO2 Utilization, 16, 204-211. DOI: 10.1016/j.jcou.2016.07.007
  57. Chimentão, R., Miranda, B., Ruiz, D., Gispert-Guirado, F., Medina, F., Llorca, J., Santos, J. (2020). Catalytic performance of zinc-supported copper and nickel catalysts in the glycerol hydrogenolysis. Journal of Energy Chemistry, 42, 185-194. DOI: 10.1016/j.jechem.2019.07.003
  58. Frankenburg, W.G., Komarewsky, V.I., Rideal, E.K. (1952). Advances in catalysis. Academic Press
  59. Kim, D.-Y., Jeong, I.-H., Jung, S.-M. (2016). Kinetic study on carbothermic reduction of MnO2 with graphite. Ironmaking & Steelmaking, 43, 526-532. DOI: 10.1080/03019233.2015.1114307
  60. Masoom Nataj, S.M., Alavi, S.M., Mazloom, G. (2019). Catalytic performance of Ni supported on ZnO‐Al2O3 composites with different Zn content in methane dry reforming. Journal of Chemical Technology & Biotechnology, 94, 1305-1314. DOI: 10.1002/jctb.5887
  61. Magalhães, R.N.S., Toniolo, F.S., Da Silva, V.T., Schmal, M. (2010). Selective CO oxidation reaction (SELOX) over cerium-doped LaCoO3 perovskite catalysts. Applied Catalysis A: General, 388, 216-224. DOI: 10.1016/j.apcata.2010.08.052
  62. Ao, M., Pham, G.H., Sage, V., Pareek, V. (2017). Selectivity enhancement for higher alcohol product in Fischer-Tropsch synthesis over nickel-substituted La0.9Sr0.1CoO3 perovskite catalysts. Fuel, 206, 390-400. DOI: 10.1016/j.fuel.2017.06.036
  63. Al-Fatesh, A.S., Fakeeha, A.H., Abasaeed, A.E. (2011). Effects of selected promoters on Ni/Y-Al2O3 catalyst performance in methane dry reforming. Chinese Journal of Catalysis, 32, 1604-1609. DOI: 10.1016/s1872-2067(10)60267-7
  64. Pichas, C., Pomonis, P., Petrakis, D., Ladavos, A. (2010). Kinetic study of the catalytic dry reforming of CH4 with CO2 over La2-xSrxNiO4 perovskite-type oxides. Applied Catalysis A: General, 386, 116-123. DOI: 10.1016/j.apcata.2010.07.043
  65. Kathiraser, Y., Thitsartarn, W., Sutthiumporn, K., Kawi, S. (2013). Inverse NiAl2O4 on LaAlO3-Al2O3: unique catalytic structure for stable CO2 reforming of methane. The Journal of Physical Chemistry C, 117, 8120-8130. DOI: 10.1021/jp401855x

Last update:

No citation recorded.

Last update:

No citation recorded.