skip to main content

Activated Bledug Kuwu’s Clay as Adsorbent Potential for Synthetic Dye Adsorption: Kinetic and Thermodynamic Studies

1Department of Chemical Education, Universitas Mulawarman, Kampus Gunung Kelua, Samarinda, 75119, East Kalimantan, Indonesia

2School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan 43900 , Malaysia

3College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China

4 Central Laboratory of Minerals and Advanced Materials, Faculty of Mathematics and Natural Sciences, State University of Malang , Indonesia

5 Center for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, Johor Bahru, 81310, Malaysia

View all affiliations
Received: 10 Oct 2021; Revised: 25 Oct 2021; Accepted: 25 Oct 2021; Available online: 29 Oct 2021; Published: 30 Mar 2022.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2021 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image
Abstract

Bledug Kuwu is one of the geological phenomena as a mud volcano that occurs in Kuwu, Purwodadi, Grobogan, Central Java, Indonesia. The evaluation of Bledug Kuwu’s clay as one of the adsorbents for synthetic dyes has been carried out. The preparation of the adsorbent started with washing the clay with distilled water, followed by activation with a solution of hydrochloric acid (1 M) under mechanistic stirring for overnight. The C−H and O−H groups found on the clay adsorbent could attract methylene blue by dispersion forces and hydrogen bonding. Hydrocloric acid activation process for clay can increase surface area from 49 to 70 m2.g1, meanwhile, reducing the average crystal size from 48.3 to 43.4 nm. The dye removal capacity increased from 34 to 40 mg.g1 in corresponding to the increase of the temperature from 30 to 50 °C. The results showed that the equilibrium adsorption capacity of activated Bledug Kuwu’s clay reached 99% in an adsorption time of 20 min. The kinetic models of methylene blue adsorption onto BKC and ABKC adsorbents follow the pseudo-second order and the adsorption process is spontaneous with free energy (ΔG) as −23.519 kJ.mol1. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Fulltext View|Download
Keywords: Clay; methylene blue; adsorption; kinetic; thermodynamic
Funding: Universitas Mulawarman under contract 814/UN17.5/PG/2021 ; Hengyuan International Sdn. Bhd. under contract EENG/0003

Article Metrics:

  1. Wanyonyi, W.C., Onyari, J.M., Shiundu, P.M. (2013). Adsorption of Methylene Blue Dye from Aqueous Solution Using Eichhornia crassipes. Bull, Environ. Contam. Toxicol., 91(3), 362-366. DOI: 10.1007/s00128-013-1053-0
  2. Nigam, P., Armour, G., Banat, L.M., Singh, D., Marchant, R. (2000). Physical removal of textile dyes from effluents and solid-sate fermentation of dye-adsorbed agriculturalresidues. Bioresour. Technol., 72, 219-226. DOI: 10.1016/S0960-8524(99)00123-6
  3. Alinsafi, A., Khemis, M., Pons, M.N., Leclerc, J.P., Yaacoubi, A., Benhammou, A., Nejmeddine, A. (2005). Electro-coagulation of reactive textile dyes and textile wastewater. Chem. Eng. Process., 44, 461-470. DOI: 10.1016/j.cep.2004.06.010
  4. Alkan, M., Celikcapa, S., Demirbas, O., Dogan, M. (2005). Removal of reactive blue 221 and acid blue 62 anionic dyes from aqueous solution by sepiolite. Dyes and Pigments, 65, 251-259. DOI: 10.1016/j.dyepig.2004.07.018
  5. Karaoglu, M.H., Dogan, M., Alkan, M. (2010). Removal of Reactive Blue 221 by Kaolinite from Aqueous Solution. Ind. Eng. Chem. Res., 49, 1534-1540. DOI: 10.1021/ie9017258
  6. Widiyowati, I., Nurhadi, M., Hatami, M., Yuan, L. (2020). Effective TiO2-Sulfonated Carbon-derived from Eichhornia crassipes in The Removal of Methylene Blue and Congo Red Dyes from Aqueous Solution. Bull. Chem. React. Eng. Catal., 15(2), 476-489. DOI: 10.9767/bcrec.15.2.6997.476-489
  7. Pelekani, C., Snoeyink, V.L. (2000). Competitive adsorption between antrazine and methylene blue on activated carbon: the importance of pore size distribution. Carbon, 38, 1423-1436. DOI: 10.1016/S0008-6223(99)00261-4
  8. Pavan, F.A., Mazzocato, A.C., Gushikem, Y. (2008). Removal of methylene blue dye from aqueous solution by adsorption using yellow passion fruit peel as adsorbent. Bioresour. Technol., 99, 3162-3165. DOI: 10.1016/j.biortech.2007.05.067
  9. Sun, Q., Yang, L. (2003). The adsorption of basic dyes from aqueous solution on modified peat-resin particle. Water Research, 37, 1535-1544. DOI: 10.1016/S0043-1354(02)00520-1
  10. Muthukumar, M., Selvakumar, N. (2004). Studies on the effect of inorganic salts on decolouration of acid dye effluent by ozonation. Dyes and Pigments, 62, 221-228. DOI: 10.1016/j.dyepig.2003.11.002
  11. Sikaily, A.E., Khaled, A., Nemr, A.E., Abdelwahab, O. (2006). Removal of Methylene Blue from aqueous solution by marine green alga Ulva lactuca. Chem. Ecol., 22, 149-157. DOI: 10.1080/02757540600579607
  12. Park, C., Lee, M., Lee, B., Kim, S.W., Chase, H.A., Lee, J., Kim, S. (2007). Biodegradation and biosorption for decolorization of synthetic dyes by Funalia trogii. Biochem. Eng. J., 36, 59-65. DOI: 10.1016/j.bej.2006.06.007
  13. El-Safty, S.A., Khairy, M., Shenashen, M.A., Elshehy, E., Warkocki, W., Sakai, M. (2015). Optical mesoscopic membrane sensor layouts for water-free and blood-free toxicants. Nano Research, 8, 3150–3163. DOI: 10.1007/s12274-015-0815-x
  14. Wanyonyi, W.C., Onyari, J.M., Shiundu, P.M. (2014). Adsorption of Congo Red Dye from Aqueous Solution Using Roots of Eichhornia Crassipes: Kinetic and Equilibrium Studies Energy. Procedia, 50, 862-869. DOI: 10.1016/j.egypro.2014.06.105
  15. Zhang, G., Lei, B., Chen, S., Xie, H., Zhou, G. (2021). Activated carbon adsorbents with micro-mesoporous structure derived from waste biomass by stepwise activation for toluene removal from air. J. Environ. Chem. Eng., 9(4), 105387. DOI: 10.1016/j.jece.2021.105387
  16. Díez, E., Gómez, J.M., Rodríguez, A., Bernabé, I., Galán, J. (2021). Recovery of Gallium from Aqueous Solution through Preconcentration by Adsorption/Desorption on Disordered Mesoporous Carbon. J. Sustain. Metall., 7, 227-242. DOI: 10.1007/s40831-021-00336-4
  17. Kusumawardani, R., Nurhadi, M., Wirhanuddin, W., Gunawan, R., Nur, H. (2019). Carbon-containing Hydroxyapatite Obtained from Fish Bone as Low-cost Mesoporous Material for Methylene Blue Adsorption. Bull. Chem. React. Eng. Catal., 14(3), 660-671. DOI: 10.9767/bcrec.14.3.5365.660-671
  18. Giri, A.K., Patel, R., Mandal, S. (2012). Removal of Cr(VI) from aqueous solution by Eichhornia crassipes root biomass-derived activated carbon. Chem. Eng. J., 185-186, 71-81. DOI: 10.1016/j.cej.2012.01.025
  19. Qhubu, M.C., Mgidlana, L.G., Madikizela, L.M., Pakade, V.E. (2021). Preparation, characterization and application of activated clay biochar composite for removal of Cr(VI) in water: Isotherms, kinetics and thermodynamics. Mater. Chem. Phys., 260, 124165. DOI: 10.1016/j.matchemphys.2020.124165
  20. Malima, N.M., Owonubi, S.J., Lugwisha, E.H., Mwakaboko, A.S. (2021). Development of cost-effective and eco-friendly adsorbent by direct physical activation of Tanzanian Malangali kaolinite for efficient removal of heavy metals. Mater. Today: Proceedings, 38, 1126-1132. DOI: 10.1016/j.matpr.2020.06.469
  21. Liu, W., Yuan, K., Yin, K., Zuo, S., Yao, C. (2021). Clay-activated carbon adsorbent obtained by activation of spent bleaching earth and its application for removing Pb(II) ion. Environ. Sci. Pollut. Res., 28, 711-723. DOI: 10.1007/s11356-020-10473-0
  22. Marrakchi, F., Hameed, B.H., Hummadi, E.H. (2020). Mesoporous biohybrid epichlorohydrin crosslinked chitosan/carbon–clay adsorbent for effective cationic and anionic dyes adsorption. Int. J. Biol. Macromol., 163, 1079-1086. DOI: 10.1016/j.ijbiomac.2020.07.032
  23. Hajjaji, W., Pullar, R.C., Labrincha, J.A., Rocha, F. (2016). Aqueous Acid Orange 7 dye removal by clay and red mud mixes. Appl. Clay Sci., 126, 197-206. DOI: 10.1016/j.clay.2016.03.016
  24. Rohmah, M., Lalasari, L.H., Natasha, N.C., Sulistiyono, E., Firdiyono, F., Soedarsono, J.W. (2020). Adsorption Behavior of Alkali Metal (Na+, Li+, and K+) from Bledug Kuwu brine by Resin Adsorbent for Purification: pH and Flow Rate Parameter. Orient. J. Chem., 36(2), 273-279. DOI: 10.13005/ojc/360209
  25. Wang, L. (2012). Application of activated carbon derived from ‘waste’ bamboo culms forthe adsorption of azo disperse dye: Kinetic, equilibrium and thermodynamic studies. J. Environ. Manag., 102, 79-87. DOI: 10.1016/j.jenvman.2012.02.019
  26. Lim, H.K., Teng, T.T., Ibrahim, M.H., Ahmad, A., Chee, H.T., (2012). Adsorption and Removal of Zinc(II) from Aqueous Solution Using Powdered Fish Bones. APCBEE Procedia, 1, 96-102. DOI: 10.1016/j.apcbee.2012.03.017
  27. Reig, F.B., Adelantado, J.V.G., Moreno, M.C.M.M. (2002). FTIR quantitative analysis of calcium carbonate (calcite) and silica (quartz) mixtures using the constant ratio method. Application to geological samples. Talanta, 58, 811-821. DOI: 10.1016/S0039-9140(02)00372-7
  28. Arif, Z., Sethy, N.K., Kumari, L., Mishra, P.K., Verma, B. (2019). Green synthesis of TiO2 nanoparticles using Cajanus cajan extract and their use in controlling the fouling of ultrafiltration PVDF membranes. Korean J. Chem. Eng., 36(7), 1148-1156. DOI: 10.1007/s11814-019-0297-8
  29. Aksu, Z. (2005). Application of biosorption for the removal of organic pollutants: a review. Process Biochem., 40, 997-1026. DOI: 10.1016/j.procbio.2004.04.008
  30. Ho, Y.S., McKay, G. (1998). Sorption of dye from aqueous solution by peat. Chem. Eng. J., 70, 115-124. DOI: 10.1016/S0032-9592(98)00112-5
  31. Kumar, P.S., Ramalingam, S., Sathishkumar, K. (2011). Removal of methylene blue dye from aqueous solution by activated carbon prepared from cashew nut shell as a new low-cost adsorbent. Korean J. Chem. Eng., 28(1), 149-155. DOI: 10.1007/s11814-010-0342-0
  32. Pathania, D., Sharma, A., Siddiqi, Z.M. (2016). Removal of congo red dye from aqueous system using Phoenix dactylifera seeds. J. Mol. Liq., 219, 359-367. DOI: 10.1016/j.molliq.2016.03.020
  33. Yang, L., Zhang, Y., Liu, X., Jiang, X., Zhang, Z., Zhang, T., Zhang, L., (2014). The Investigation of Synergistic and competitive interaction between dye Congo red and Methyl blue on magnetic MnFe2O4. Chem. Eng. J., 246, 88-96. DOI: 10.1016/j.cej.2014.02.044
  34. Gao, J.-j., Qin, Y.-b., Zhou, T., Cao, D.-d., Xu, P., Hochstetter, D., Wang, Y-f. (2013). Adsorption of methylene blue onto activated carbon produced from tea (Camellia sinensis L.) seed shells: kinetics, equilibrium, and thermodynamics studies. J. Zhejiang University: Sci. B (Biomedic. Biotechnol.), 14(7), 650-658. DOI: 10.1631/jzus.B12a0225
  35. Chang, Y., Lai, J.-Y., Lee, D.-J. (2016). Thermodynamic parameters for adsorption equilibrium of heavy metals and dyes from wastewaters: Research updated. Bioresour. Technol., 222, 513-516. DOI: 10.1016/j.biortech.2016.09.125
  36. Du, X., Cheng, Y., Liu, Z., Yin, H., Wu, T., Huo, L., Shu, C., (2021). CO2 and CH4 adsorption on different rank coals: A thermodynamics study of surface potential, Gibbs free energy change and entropy loss. Fuel, 283, 118886. DOI: 10.1016/j.fuel.2020.118886
  37. Rahman, A., Kishimoto, N., Urabe, T. (2015). Adsorption characteristics of clay adsorbents – sepiolite, kaolin and synthetic talc – for removal of Reactive Yellow 138:1. Water and Environ. J., 29, 375-382. DOI: 10.1111/wej.12131

Last update:

No citation recorded.

Last update:

No citation recorded.