skip to main content

Preparation of Bi2O3/TiO2–Montmorillonite Nanocomposites and Their Applications to the Photodegradation of Pentachlorophenol

1Laboratoire de Génie Chimique (LGC), Faculté de Technologie, Université Blida 1, B.P 270, Route de Soumaa, 09000 Blida, Algeria

2Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure de Kouba, Alger , Algeria

3Ecole Supérieure des Sciences de l’Aliment et des Industries Agroalimentaires, Beau Lieu, El Harrach Alger, Algeria

Received: 2 Oct 2021; Revised: 18 Nov 2021; Accepted: 19 Nov 2021; Available online: 22 Nov 2021; Published: 30 Mar 2022.
Editor(s): Dmitry Murzin
Open Access Copyright (c) 2021 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image
Abstract

In the past decades, there has been a growing tendency to study the different techniques that can increase the photocatalytic efficiency as well as recyclability of new products “photocatalysts” for water treatment. In this last research the effect of bismuth addition to titanium was investigated. Bi/Ti-pillared montmorillonites have been prepared from natural Algerian bentonite exactly from deposits of Maghnia situated in the west side of the country. These nanocomposites were characterized by X-ray diffraction (XRD), Brunauer-Emmet-Teller (BET), scanning electron microscopy (SEM) methods, and Fourier Transformed Infrared (FT-IR). The photocatalytic activities have been tested for the removal of pentaclorophenol (PCP) in water. The effect of preparation conditions, the pH of the solution and photocatalysts concentration, on these activities has been investigated. It was found that the photocatalytic degradation increase by addition of bismuth in pillaring process. The Mont-Bi-Ti is shown to be the best photocatalyst in term of photocatalytic activity. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Fulltext View|Download
Keywords: Bi2O3; TiO2-Motmorillonite; Nanocomposites; Pentachlorophenol; Photocatalysis
Funding: Université Blida 1

Article Metrics:

  1. Khuzwayo, Z., Chirwa, E.M.N. (2017). The impact of alkali metal halide electron donor complexes in the photocatalytic degradation of pentachlorophenol. Journal of Hazardous Materials, 321, 424–431. DOI: 10.1016/j.jhazmat.2016.08.069
  2. Govindan, K., Murugesan, S., Maruthamuthu, P. (2013). Photocatalytic degradation of pentachlorophenol in aqueous solution by visible light sensitive NF-codoped TiO2 photocatalyst. Materials Research Bulletin, 48(5), 1913–1919. DOI: 10.1016/J.MATERRESBULL.2013.01.047
  3. Gunlazuardi, J., Lindu, W.A. (2005). Photocatalytic degradation of pentachlorophenol in aqueous solution employing immobilized TiO2 supported on titanium metal. Journal of Photochemistry and Photobiology A: Chemistry, 173(1), 51–55. DOI: 10.1016/j.jphotochem.2005.01.002
  4. Houari, M., Saidi, M., Tabet, D., Pichat, P., Khalaf, H. (2005). The removal of 4-chlorophenol and dichloroacetic acid in water using Ti-, Zr-and Ti/Zr-pillared bentonites as photocatalyst. American Journal of Applied Sciences, 2(7), 1136–1140. DOI: 10.3844/ajassp.2005.1136.1140
  5. Luo, Y., Li, M., Hu, G., Tang, T., Wen, J., Li, X., Wang, L. (2018). Enhanced photocatalytic activity of sulfur-doped graphene quantum dots decorated with TiO2 nanocomposites. Materials Research Bulletin, 97, 428–435. DOI: 10.1016/j.materresbull.2017.09.038
  6. Patil, S.P., Bethi, B., Sonawane, G.H., Shrivastava, V.S., Sonawane, S. (2016). Efficient adsorption and photocatalytic degradation of Rhodamine B dye over Bi2O3-bentonite nanocomposites: A kinetic study. Journal of Industrial and Engineering Chemistry, 34, 356–363. DOI: 10.1016/j.jiec.2015.12.002
  7. Meshram, S., Limaye, R., Ghodke, S., Nigam, S., Sonawane, S., Chikate, R. (2011). Continuous flow photocatalytic reactor using ZnO–bentonite nanocomposite for degradation of phenol. Chemical Engineering Journal, 172(2), 1008–1015. DOI: 10.1016/j.cej.2011.07.015
  8. Riaz, U., Ashraf, S.M., Ruhela, A. (2015). Catalytic degradation of orange G under microwave irradiation with a novel nanohybrid catalyst. Journal of Environmental Chemical Engineering, 3(1), 20–29. DOI: 10.1016/j.jece.2014.06.010
  9. Hamane, D., Arous, O., Kaouah, F., Trari, M., Kerdjoudj, H., Bendjama, Z. (2015). Adsorption/photo-electrodialysis combination system for Pb2+ removal using bentonite/membrane/semiconductor. Journal of Environmental Chemical Engineering, 3(1), 60–69. DOI: 10.1016/j.jece.2014.11.003
  10. Madhusudan Reddy, K., Baruwati, B., Jayalakshmi, M., Mohan Rao, M., Manorama, S.V. (2005). S-, N- and C-doped titanium dioxide nanoparticles: Synthesis, characterization and redox charge transfer study. Journal of Solid State Chemistry, 178(11), 3352–3358. DOI: 10.1016/j.jssc.2005.08.016
  11. Kaur, S., Singh, V. (2007). Visible light induced sonophotocatalytic degradation of Reactive Red dye 198 using dye sensitized TiO2. Ultrasonics Sonochemistry, 14(5), 531–537. DOI: 10.1016/j.ultsonch.2006.09.015
  12. Khalfaoui-Boutoumi, N., Boutoumi, H., Khalaf, H., David, B. (2013). Synthesis and characterization of TiO2–Montmorillonite/Polythiophene-SDS nanocomposites: Application in the sonophotocatalytic degradation of rhodamine 6G. Applied Clay Science, 80-81, 56–62. DOI: 10.1016/j.clay.2013.06.005
  13. Bessekhouad, Y., Robert, D., Weber, J.-V. (2005). Photocatalytic activity of Cu2O/TiO2, Bi2O3/TiO2 and ZnMn2O4/TiO2 heterojunctions. Catalysis Today, 101(3-4), 315–321. DOI: 10.1016/j.cattod.2005.03.038
  14. Bessekhouad, Y., Chaoui, N., Trzpit, M., Ghazzal, N., Robert, D., Weber, J.V. (2006). UV–vis versus visible degradation of Acid Orange II in a coupled CdS/TiO2 semiconductors suspension. Journal of Photochemistry and Photobiology A: Chemistry, 183(1), 218–224. DOI: 10.1016/j.jphotochem.2006.03.025
  15. Brahimi, R., Bessekhouad, Y., Bouguelia, A., Trari, M. (2007). CuAlO2/TiO2 heterojunction applied to visible light H2 production. Journal of Photochemistry and Photobiology A: Chemistry, 186(2), 242–247. DOI: 10.1016/j.jphotochem.2006.08.013
  16. Brahimi, R., Bessekhouad, Y., Bouguelia, A., Trari, M. (2008). Improvement of eosin visible light degradation using PbS-sensititized TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 194(2), 173–180. DOI: 10.1016/j.jphotochem.2007.08.008
  17. Bessekhouad, Y., Brahimi, R., Hamdini, F., Trari, M. (2012). Cu2S/TiO2 heterojunction applied to visible light Orange II degradation. Journal of Photochemistry and Photobiology A: Chemistry, 248, 15–23. DOI: 10.1016/j.solener.2010.03.024
  18. Brahimi, R., Bessekhouad, Y., Nasrallah, N., Trari, M. (2012). Visible light CrO42− reduction using the new CuAlO2/CdS hetero-system. Journal of Hazardous Materials, 219-220, 19–25. DOI: 10.1016/j.jhazmat.2012.03.011
  19. Li, L., Huang, X., Zhang, J., Zhang, W., Ma, F., Xiao, Z., Gai, S., Wang, D., Li, N. (2015). Multi-layer three-dimensionally ordered bismuth trioxide/titanium dioxide nanocomposite: synthesis and enhanced photocatalytic activity. Journal of Colloid and Interface Science, 443, 13–22. DOI: 10.1016/j.jcis.2014.11.062
  20. Liu, Y., Xin, F., Wang, F., Luo, S., Yin, X. (2010). Synthesis, characterization, and activities of visible light-driven Bi2O3–TiO2 composite photocatalysts. Journal of Alloys and Compounds, 498(2), 179–184. DOI: 10.1016/j.jallcom.2010.03.151
  21. Juan, Y., Jian-Tong, L., Juan, M. (2011). Visible light photocatalytic performance of Bi2O3/TiO2 nanocomposite particles. Chinese Journal of Inorganic Chemistry, 27(3), 547–555
  22. Zou, H., Song, M., Yi, F., Bian, L., Liu, P., Zhang, S. (2016). Simulated-sunlight-activated photocatalysis of Methyl Orange using carbon and lanthanum co-doped Bi2O3–TiO2 composite. Journal of Alloys and Compounds, 680, 54–59. DOI: 10.1016/j.jallcom.2016.04.094
  23. Rongan, H., Haijuan, L., Huimin, L., Difa, X., Liuyang, Z. (2020). S-scheme photocatalyst Bi2O3/TiO2 nanofiber with improved photocatalytic performance. Journal of Materials Science & Technology, 52, 145–151. DOI: 10.1016/j.jmst.2020.03.027
  24. Kargar, F., Bemani, A., Sayadi, M.H., Ahmadpour, N. (2021). Synthesis of modified beta bismuth oxide by titanium oxide and highly efficient solar photocatalytic properties on hydroxychloroquine degradation and pathways. Journal of Photochemistry and Photobiology A: Chemistry, 419, 113453. DOI: 10.1016/j.jphotochem.2021.113
  25. Khalaf, H., Bouras, O., Perrichon, V. (1997). Synthesis and characterization of Al-pillared and cationic surfactant modified Al-pillared Algerian bentonite. Microporous Materials, 8(3), 141–150. DOI: 10.1016/S0927-6513(96)00079-X
  26. Damardji, B., Khalaf, H., Duclaux, L., David, B. (2009). Preparation of TiO2-pillared montmorillonite as photocatalyst Part I. Microwave calcination, characterisation, and adsorption of a textile azo dye. Applied Clay Science, 44(3-4), 201–205. DOI: 10.1016/j.clay.2008.12.010
  27. Pichat, P., Khalaf, H., Tabet, D., Houari, M., Saidi, M. (2005). Ti-montmorillonite as photocatalyst to remove 4-chlorophenol in water and methanol in air. Environmental Chemistry Letters, 2(4), 191–194. DOI: 10.1007/s10311-004-0090-7
  28. Damardji, B., Khalaf, H., Duclaux, L., David, B. (2009). Preparation of TiO2-pillared montmorillonite as photocatalyst Part II: Photocatalytic degradation of a textile azo dye. Applied Clay Science, 45(1-2), 98–104. DOI: 10.1016/j.clay.2009.04.002
  29. Sing, K.S. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry, 57(4), 603-619. DOI: 10.1351/pac198557040603
  30. Boukhatem, H., Khalaf, H., Djouadi, L., Gonzalez, F.V., Navarro, R.M., Santaballa, J.A., Canle, M. (2017). Photocatalytic activity of mont-La (6%)-Cu0.6Cd0.4S catalyst for phenol degradation under near UV visible light irradiation. Applied Catalysis B: Environmental, 211, 114–125. DOI: 10.1016/j.apcatb.2017.03.074
  31. Hadj Bachir, D., Khalaf, H., Ferroukhi, S., Boutoumi, Y., Schnee, J., Gaigneaux, E. (2020). Preparation and characterization of TiO2 pillared clay: effect of palladium and photosensitizer on photocatalytic activity. Research Journal of Chemistry and Environment, 24(3), 60-73
  32. Castillo, H.L.D., Grange, P. (1993). Preparation and catalytic activity of titanium pillared montmorillonite. Applied Catalysis A: General, 103(1), 23–34. DOI: 10.1016/0926-860X(93)85170-T
  33. Ding, X., An, T., Li, G., Zhang, S., Chen, J., Yuan, J., Zhao, H., Chen, H., Sheng, G., Fu, J. (2008). Preparation and characterization of hydrophobic TiO2 pillared clay: The effect of acid hydrolysis catalyst and doped Pt amount on photocatalytic activity. Journal of Colloid and Interface Science, 320(2), 501–507. DOI: 10.1016/j.jcis.2007.12.042
  34. Labib, I., Boutoumi, H., Khalaf, H. (2020). Synergistic Effect of Microwave Calcination and Sonophotocatalytic Activity of TiO2-Montmorillonite on The Degradation of Direct Yellow 106 and Disperse Violet 1. Bulletin of Chemical Reaction Engineering & Catalysis, 15(2), 304–318. DOI: 10.9767/bcrec.15.2.6999.304-318
  35. Bessekhouad, Y., Mohammedi, M., Trari, M. (2002). Hydrogen photoproduction from hydrogen sulfide on Bi2S3 catalyst. Solar Energy Materials and Solar Cells, 73(3), 339–350. DOI: 10.1016/S0927-0248(01)00218-5
  36. Xiao, J., Peng, T., Dai, K., Zan, L., Peng, Z. (2007). Hydrothermal synthesis, characterization and its photoactivity of CdS/Rectorite nanocomposites. Journal of Solid State Chemistry, 180(11), 3188–3195. DOI: 10.1016/j.jssc.2007.09.009
  37. Dubey, N., Rayalu, S.S., Labhsetwar, N.K., Naidu, R.R., Chatti, R.V., Devotta, S. (2006). Photocatalytic properties of zeolite-based materials for the photoreduction of methyl orange. Applied Catalysis A: General, 303(2), 152–157. DOI: 10.1016/j.apcata.2006.01.043
  38. Natarajan, T.S., Natarajan, K., Bajaj, H.C., Tayade, R.J. (2013). Enhanced photocatalytic activity of bismuth-doped TiO2 nanotubes under direct sunlight irradiation for degradation of Rhodamine B dye. Journal of Nanoparticle Research, 15(5), 1669. DOI: 10.1007/s11051-013-1669-3
  39. Chiou, C.-H., Wu, C.-Y., Juang, R.-S. (2008). Photocatalytic degradation of phenol and m-nitrophenol using irradiated TiO2 in aqueous solutions. Separation and Purification Technology, 62(3), 559–564. DOI: 10.1016/j.seppur.2008.03.009
  40. Dougna, A.A., Gombert, B., Kodom, T., Djaneye-Boundjou, G., Boukari, S.O.B., Leitner, N.K.V., Bawa, L.M. (2015). Photocatalytic removal of phenol using titanium dioxide deposited on different substrates: Effect of inorganic oxidants. Journal of Photochemistry and Photobiology A: Chemistry, 305, 67–77. DOI: 10.1016/j.jphotochem.2015.02.012
  41. Houndedjihou, D., Kodom, T., Dougna, A.A., Tchakala, I., Djaneye-Boundjou, G., Bawa, L.M. (2018). Oxidation of Catechol and Hydroquinone in Aqueous Media by Heterogeneous Photocatalysis Using Thin Layer of TiO2 P25. Chemical Science International Journal, 24(2), 1–10. DOI: 10.9734/CSJI/2018/44176
  42. Pelentridou, K., Stathatos, E., Karasali, H., Lianos, P. (2009). Photodegradation of the herbicide azimsulfuron using nanocrystalline titania films as photocatalyst and low intensity black light radiation or simulated solar radiation as excitation source. Journal of Hazardous Materials, 163(2-3), 756-760. DOI: 10.1016/j.jhazmat.2008.07.023
  43. Poulios, I., Tsachpinis, I. (1999). Photodegradation of the textile dye Reactive Black 5 in the presence of semiconducting oxides. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 74(4), 349-357. DOI: 10.1002/(SICI)1097-4660(199904)74:4<349::AID-JCTB5>3.0.CO;2-7
  44. Dong, S., Xia, L., Chen, X., Cui, L., Zhu, W., Lu, Z., Sun, J., Fan, M. (2021). Interfacial and electronic band structure optimization for the adsorption and visible-light photocatalytic activity of macroscopic ZnSnO3/graphene aerogel. Composites Part B: Engineering, 215, 108765. DOI: 10.1016/j.compositesb.2021.108765
  45. Sayadi, M.H., Ahmadpour, N., Homaeigohar, S. (2021). Photocatalytic and Antibacterial Properties of Ag-CuFe2O4@WO3 Magnetic Nanocomposite. Nanomaterials, 11(2), 298. DOI: 10.3390/nano11020298

Last update:

No citation recorded.

Last update:

No citation recorded.