skip to main content

Synthesis of Magnetic Base Catalyst from Industrial Waste for Transesterification of Palm Oil

1College of Graduate Studies, Universiti Tenaga Nasional, 43000 Kajang, Selangor, Malaysia

2Institute of Sustainable Energy, Universiti Tenaga Nasional, 43000 Kajang, Selangor , Malaysia

3Department of Mechanical Engineering, College of Engineering, Universiti Tenaga Nasional, 43000 Kajang, Selangor, Malaysia

Received: 30 Sep 2021; Revised: 18 Nov 2021; Accepted: 18 Nov 2021; Available online: 22 Nov 2021; Published: 30 Mar 2022.
Editor(s): Istadi Istadi, Suresh Sagadevan
Open Access Copyright (c) 2021 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image

Industrial waste is produced in large amounts annually; without proper planning, the waste might cause a serious threat to the environment. Hence, an industrial waste-based heterogeneous magnetic catalyst was synthesized using carbide lime waste (CLW) as raw material for biodiesel production via transesterification of palm oil. The catalyst was successfully synthesized by the one-step impregnation method and calcination at 600 °C. The synthesized catalyst, C-CLW/g-Fe2O3, was characterized by temperature-programmed desorption of carbon dioxide (CO2-TPD), scanning electron microscopy (SEM), electron dispersive X-ray spectroscopy (EDX), X-ray Diffraction (XRD), Brunauer-Emmett-Teller (BET), vibrating sample magnetometer (VSM), and Fourier transform infrared spectroscopy (FT-IR). The catalyst has a specific surface area of 18.54 m2/g and high basicity of 3,637.20 µmol/g. The catalytic performance shows that the optimum reaction conditions are 6 wt% catalyst loading, 12:1 methanol to oil molar ratio with the reaction time of 3 h at 60 °C to produce 90.5% biodiesel yield. The catalyst exhibits good catalytic activity and magnetism, indicating that the CLW can be a potential raw material for catalyst preparation and application in the biodiesel industry. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (


Fulltext View|Download
Keywords: Carbide lime waste; Magnetic; Base catalyst; Transesterification; palm oil
Funding: Ministry of Higher Education (MoHE) of Malaysia under contract Fundamental Research Grant Scheme (FRGS/1/2018/STG07/UNITEN/02/3)

Article Metrics:

  1. Othman, R., Isa, N., Othman, A. (2015). Precipitated Calcium Carbonate from Industrial Waste for Paper Making. Sains Malaysiana, 44, 1561–1565
  2. Lam, S.M., Sin, J.C. (2019). Investigation of By-products from Acetylene Manufacturing for Acid Mine Drainage Remediation. Mine Water Environ., 38, 757–766. DOI: 10.1007/s10230-019-00640-2
  3. Ayeche, R., Hamdaoui, O. (2012). Valorization of carbide lime waste, a by-product of acetylene manufacture, in wastewater treatment. Desalin. Water Treat., 50, 87–94. DOI: 10.1080/19443994.2012.708547
  4. Chindaprasirt, P., Kampala, A., Jitsangiam, P., Horpibulsuk, S. (2020). Performance and evaluation of calcium carbide residue stabilized lateritic soil for construction materials. Case Stud. Constr. Mater., 13, e00389. DOI: 10.1016/j.cscm.2020.e00389
  5. Gebremariam, S.N., Marchetti, J.M. (2018). Economics of biodiesel production: Review. Energy Convers. Manag., 168, 74–84. DOI: 10.1016/j.enconman.2018.05.002
  6. Ashok, B., Nanthagopal, K., Sakthi Vignesh, D. (2018). Calophyllum inophyllum methyl ester biodiesel blend as an alternate fuel for diesel engine applications. Alexandria Eng. J., 57, 1239–1247. DOI: 10.1016/j.aej.2017.03.042
  7. Jayakumar, S., Yusoff, M.M., Rahim, M.H.A., Maniam, G.P., Govindan, N. (2017). The prospect of microalgal biodiesel using agro-industrial and industrial wastes in Malaysia. Renew. Sustain. Energy Rev., 72, 33–47. DOI: 10.1016/j.rser.2017.01.002
  8. Atadashi, I.M., Aroua, M.K., Abdul Aziz, A.R., Sulaiman, N.M.N. (2013). The effects of catalysts in biodiesel production: A review. J. Ind. Eng. Chem., 19, 14–26. DOI: 10.1016/j.jiec.2012.07.009
  9. Chiang, C.L., Lin, K.S., Shu, C.W., Wu, J.C.S., Wu, K.C.W., Huang, Y.T. (2020). Enhancement of biodiesel production via sequential esterification/transesterification over solid superacidic and superbasic catalysts. Catal. Today, 348, 257–269. DOI: 10.1016/j.cattod.2019.09.037
  10. Ong, H.R., Khan, M.R., Chowdhury, M.N.K., Yousuf, A., Cheng, C.K. (2014). Synthesis and characterization of CuO/C catalyst for the esterification of free fatty acid in rubber seed oil. Fuel, 120, 195–201. DOI: 10.1016/j.fuel.2013.12.015
  11. Neumann, K., Werth, K., Martín, A., Górak, A. (2016). Biodiesel production from waste cooking oils through esterification: Catalyst screening, chemical equilibrium and reaction kinetics. Chem. Eng. Res. Des., 107, 52–62. DOI: 10.1016/j.cherd.2015.11.008
  12. Marwaha, A., Rosha, P., Mohapatra, S.K., Mahla, S.K., Dhir, A. (2018). Waste materials as potential catalysts for biodiesel production: Current state and future scope. Fuel Process. Technol., 181, 175–186. DOI: 10.1016/j.fuproc.2018.09.011
  13. Pandit, P.R., Fulekar, M.H. (2019). Biodiesel production from microalgal biomass using CaO catalyst synthesized from natural waste material. Renew. Energy, 136, 837–845. DOI: 10.1016/j.renene.2019.01.047
  14. Bet-Moushoul, E., Farhadi, K., Mansourpanah, Y., Nikbakht, A.M., Molaei, R., Forough, M. (2016). Application of CaO-based/Au nanoparticles as heterogeneous nanocatalysts in biodiesel production. Fuel, 164, 119–127. DOI: 10.1016/j.fuel.2015.09.067
  15. Faruque, M.O., Razzak, S.A., Hossain, M.M. (2020). Application of heterogeneous catalysts for biodiesel production from microalgal oil—a review. Catalysts, 10, 1025. DOI: 10.3390/catal10091025
  16. Chen, M.N., Mo, L.P., Cui, Z.S., Zhang, Z.H. (2019). Magnetic nanocatalysts: Synthesis and application in multicomponent reactions. Curr. Opin. Green Sustain. Chem., 15, 27–37. DOI: 10.1016/j.cogsc.2018.08.009
  17. Chang, K.L., Lin, Y.C., Jhang, S.R., Cheng, W.L., Chen, S.C., Mao, S.Y. (2017). Rapid jatropha-castor biodiesel production with microwave heating and a heterogeneous base catalyst nano-Ca(Oh)2/Fe3O4. Catalysts, 7, 203. DOI: 10.3390/catal7070203
  18. Winoto, V., Yoswathana, N. (2019). Optimization of biodiesel production using nanomagnetic CaO-based catalysts with subcritical methanol transesterification of rubber seed oil. Energies, 12(2), 230. DOI: 10.3390/en12020230
  19. Ali, R.M., Elkatory, M.R., Hamad, H.A. (2020). Highly active and stable magnetically recyclable CuFe2O4 as a heterogenous catalyst for efficient conversion of waste frying oil to biodiesel. Fuel, 268, 117297. DOI: 10.1016/j.fuel.2020.117297
  20. Hu, S., Guan, Y., Wang, Y., Han, H. (2011). Nano-magnetic catalyst KF/CaO-Fe3O4 for biodiesel production. Appl. Energy, 88, 2685–2690. DOI: 10.1016/j.apenergy.2011.02.012
  21. Dai, Y.M., Wang, Y.F., Chen, C.C. (2018). Synthesis and characterization of magnetic LiFe5O8-LiFeO2 as a solid basic catalyst for biodiesel production. Catal. Commun., 106, 20–24. DOI: 10.1016/j.catcom.2017.12.002
  22. Abdullah, S.H.Y.S., Hanapi, N.H.M., Azid, A., Umar, R., Juahir, H., Khatoon, H., Endut, A. (2017). A review of biomass-derived heterogeneous catalyst for a sustainable biodiesel production. Renew. Sustain. Energy Rev., 70, 1040–1051. DOI: 10.1016/j.rser.2016.12.008
  23. Klinklom, P., Luengnaruemitchai, A., Jai-in, S. (2013). Effect of Catalyst preparation on the Performance of CaO-ZnO Catalyst for Transesterification. Int. Sch. Sci. Reseach Innov., 7, 218–223. DOI: 10.5281/zenodo.1070957
  24. Hamzah, N., Yusof, I., Samad, W.Z., Hamid, H.A.A., Tajuddin, N.A., Ibrahim, M.L. (2021). Calcium oxide derived from egg shells: A low cost catalyst for biodiesel production. Malaysian J. Chem., 23, 11–18
  25. Widayat, W., Darmawan, T., Hadiyanto, H., Rosyid, R. A. (2017). Preparation of Heterogeneous CaO Catalysts for Biodiesel Production. J. Phys. Conf. Ser., 877, 8–15. DOI: 10.1088/1742-6596/877/1/012018
  26. Sun, Z., Chen, S., Russell, C.K., Hu, J., Rony, A.H., Tan, G., Chen, A., Duan, L., Boman, J., Tang, J., Chien, T.Y., Fan, M., Xiang, W. (2018). Improvement of H2-rich gas production with tar abatement from pine wood conversion over bi-functional Ca2Fe2O5 catalyst: Investigation of inner-looping redox reaction and promoting mechanisms. Appl. Energy, 212, 931–943. DOI: 10.1016/j.apenergy.2017.12.087
  27. Kholkina, E., Kumar, N., Ohra-aho, T., Lehtonen, J., Lindfors, C., Perula, M., Peltonen, J., Salonen, J., Murzin, D.Y. (2019). Synthesis and Characterization of Novel Catalytic Materials Using Industrial Slag: Influence of Alkaline Pretreatment, Synthesis Time and Temperature. Top. Catal., 62, 738–751. DOI: 10.1007/s11244-019-01162-5
  28. Dantas, J., Leal, E., Cornejo, D.R., Kiminami, R.H.G.A., Costa, A.C.F.M. (2018). Biodiesel production evaluating the use and reuse of magnetic nanocatalysts Ni0.5Zn0.5Fe2O4 synthesized in pilot-scale. Arab. J. Chem., 13, 3026–3042. DOI: 10.1016/j.arabjc.2018.08.012
  29. Jing, J.Y., Zhang, Z.Y., Wang, S.D., Li, W.Y. (2018). Influence of calcination temperature on the structure and catalytic reforming performance of Ni/CaO-Al2O3 catalyst. Ranliao Huaxue Xuebao/Journal Fuel Chem. Technol., 46, 673–679. DOI: 10.1016/s1872-5813(18)30030-6
  30. Maneerung, T., Kawi, S., Wang, C.H. (2015). Biomass gasification bottom ash as a source of CaO catalyst for biodiesel production via transesterification of palm oil. Energy Convers. Manag., 92, 234–243. DOI: 10.1016/j.enconman.2014.12.057
  31. Shi, M., Zhang, P., Fan, M., Jiang, P., Dong, Y. (2017). Influence of crystal of Fe2O3 in magnetism and activity of nanoparticle CaO@Fe2O3 for biodiesel production. Fuel, 197, 343–347. DOI: 10.1016/j.fuel.2017.02.060
  32. Ibrahim, N.A., Rashid, U., Taufiq-Yap, Y.H., Yaw, T.C.S., Ismail, I. (2019). Synthesis of carbonaceous solid acid magnetic catalyst from empty fruit bunch for esterification of palm fatty acid distillate (PFAD). Energy Convers. Manag., 195, 480–491. DOI: 10.1016/j.enconman.2019.05.022
  33. Tang, S., Wang, L., Zhang, Y., Li, S., Tian, S., Wang, B. (2012). Study on preparation of Ca/Al/Fe3O4 magnetic composite solid catalyst and its application in biodiesel transesterification. Fuel Process. Technol., 95, 84–89. DOI: 10.1016/j.fuproc.2011.11.022
  34. Junior, E.G.S., Justo, O.R., Perez, V.H., da Silva Melo, F., Reyero, I., Serrano-Lotina, A., Mompean, F.J. (2020). Biodiesel synthesis using a novel monolithic catalyst with magnetic properties (K2CO3/γ-Al2O3/Sepiolite/γ-Fe2O3) by ethanolic route. Fuel, 271, 117650. DOI: 10.1016/j.fuel.2020.117650
  35. Engin, B., Demirtaş, H., Eken, M. (2006). Temperature effects on egg shells investigated by XRD, IR and ESR techniques. Radiat. Phys. Chem., 75, 268–277. DOI: 10.1016/j.radphyschem.2005.09.013
  36. Ali, R.M., Abd El Latif, M.M., Farag, H.A. (2015). Preparation and Characterization of CaSO4–SiO2–CaO/SO42- Composite for Biodiesel Production. Am. J. Appl. Chem., 3, 38. DOI: 10.11648/j.ajac.s.2015030301.16
  37. Galván-Ruiz, M., Hernández, J., Baños, L., Noriega-Montes, J., Rodríguez-García, M.E. (2009). Characterization of Calcium carbonate, calcium oxide, and calcium hydroxide as starting point to the improvement of lime for their use in construction. J. Mater. Civ. Eng., 21, 694–698. DOI: 10.1061/(ASCE)0899-1561(2009)21:11(694)
  38. Ali, M.A., Al-Hydary, I.A., Al-Hattab, T.A. (2017). Nano-magnetic catalyst CaO-Fe3O4 for biodiesel production from date palm seed oil. Bull. Chem. React. Eng. Catal., 12, 460–468. DOI: 10.9767/bcrec.12.3.923.460-468
  39. Li, F.J., Li, H.Q., Wang, L.G., Cao, Y. (2015). Waste carbide slag as a solid base catalyst for effective synthesis of biodiesel via transesterification of soybean oil with methanol. Fuel Process. Technol., 131, 421–429. DOI: 10.1016/j.fuproc.2014.12.018
  40. Liu, Y., Zhang, P., Fan, M., Jiang, P. (2016). Biodiesel production from soybean oil catalyzed by magnetic nanoparticle MgFe2O4@CaO. Fuel, 164, 314–321. DOI: 10.1016/j.fuel.2015.10.008
  41. Chieng, B.W., Lee, S.H., Ibrahim, N.A., Then, Y.Y., Loo, Y.Y. (2017). Isolation and characterization of cellulose nanocrystals from oil palm mesocarp fiber. Polymers, 9, 355. DOI: 10.3390/polym9080355
  42. Rao, B.V.S.K., Chandra Mouli, K., Rambabu, N., Dalai, A.K., Prasad, R.B.N. (2011). Carbon-based solid acid catalyst from de-oiled canola meal for biodiesel production. Catal. Commun., 14, 20–26. DOI: 10.1016/j.catcom.2011.07.011
  43. Burhani, D., Putri, A.M.H., Waluyo, J., Nofiana, Y., Sudiyani, Y. (2017). The effect of two-stage pretreatment on the physical and chemical characteristic of oil palm empty fruit bunch for bioethanol production. AIP Conf. Proc., 1904, 020016. DOI: 10.1063/1.5011873
  44. Ullah, K., Ahmad, M., Sultana, S., Teong, L.K., Sharma, V.K., Abdullah, A.Z., Zafar, M., Ullah, Z. (2014). Experimental analysis of di-functional magnetic oxide catalyst and its performance in the hemp plant biodiesel production. Appl. Energy, 113, 660–669. DOI: 10.1016/j.apenergy.2013.08.023
  45. Helwani, Z., Ramli, M., Saputra, E., Bahruddin, B., Yolanda, D., Fatra, W., Idroes, G.M., Muslem, M., Mahlia, T.M.I., Idroes, R. (2020). Impregnation of CaO from eggshell waste with magnetite as a solid catalyst (Fe3O4/CaO) for transesterification of palm oil off-grade. Catalysts, 10, 164. DOI: 10.3390/catal10020164
  46. Farrokheh, A., Tahvildari, K., Nozari, M. (2020). Biodiesel production from the Chlorella vulgaris and Spirulina platensis microalgae by electrolysis using CaO/KOH-Fe3O4 and KF/KOH-Fe3O4 as magnetic nanocatalysts. Biomass Convers. Biorefinery. DOI: 10.1007/s13399-020-00688-z

Last update:

No citation recorded.

Last update:

No citation recorded.