skip to main content

Synthesis of Magnetic Catalyst Derived from Oil Palm Empty Fruit Bunch for Esterification of Oleic Acid: An Optimization Study

1College of Graduate Studies, Universiti Tenaga Nasional, 43000 Kajang, Selangor, Malaysia

2Institute of Sustainable Energy, Universiti Tenaga Nasional, 43000 Kajang, Selangor , Malaysia

3Department of Mechanical Engineering, College of Engineering, Universiti Tenaga Nasional, 43000 Kajang, Selangor, Malaysia

Received: 30 Sep 2021; Revised: 18 Nov 2021; Accepted: 18 Nov 2021; Available online: 22 Nov 2021; Published: 30 Mar 2022.
Editor(s): Istadi Istadi, Suresh Sagadevan
Open Access Copyright (c) 2021 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image

Biomass, renewable, abundantly available and a good source of energy. The conversion of biomass waste into valuable products has received wide attention. In this study, an empty fruit bunch (oil palm EFB) supported magnetic acid catalyst for esterification reaction was successfully prepared via the one-step impregnation process. The new magnetic catalyst achieved a higher surface area of 188.87 m2/g with a total acidity of 2.4 mmol/g and identified iron oxide as g-Fe2O3. The magnetization value of 24.97 emu/g demonstrated that the superparamagnetic catalyst could be easily recovered and separated after the reaction using an external magnet. The catalytic performance of oil palm EFB supported magnetic acid catalyst was examined by esterification of oleic acid. Esterification process parameters were optimized via Response Surface Methodology (RSM) optimization tool with Box-Behnken design (BBD). The following optimum parameters were determined: an amount of 9 wt% catalyst, molar ratio of methanol to oleic acid of 12:1, reaction time of 2 h and reaction temperature of 60 °C with a maximum conversion of 94.91% was achieved. The catalyst can be recycled up to five cycles with minimal loss in its activity. The oil palm waste-based magnetic acid catalyst indicates its potential replacement to the existing solid catalysts that are economical and environmentally friendly for the esterification process in biofuel applications. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (


Fulltext View|Download
Keywords: Biomass; Magnetic; Catalyst; Esterification; Optimization; Oil Palm Empty Fruit Bunch
Funding: Ministry of Higher Education (MOHE) of Malaysia under contract Fundamental Research Grant Scheme (FRGS/1/2018/STG07/UNITEN/02/3)

Article Metrics:

  1. Barbieri, L., Andreola, F., Lancellotti, I., Taurino, R. (2013). Management of agricultural biomass wastes: Preliminary study on characterization and valorisation in clay matrix bricks. Waste Manag., 33, 2307–2315. DOI: 10.1016/j.wasman.2013.03.014
  2. McKendry, P. (2002). Energy production from biomass (part 1): Overview of biomass. Bioresour. Technol., 83, 37–46. DOI: 10.1016/S0960-8524(01)00118-3
  3. Sansaniwal, S.K., Rosen, M.A., Tyagi, S.K. (2017). Global challenges in the sustainable development of biomass gasification: An overview. Renew. Sustain. Energy Rev., 80, 23–43. DOI: 10.1016/j.rser.2017.05.215
  4. Mohammad, N., Alam, M.Z., Kabbashi, N.A., Ahsan, A. (2012). Effective composting of oil palm industrial waste by filamentous fungi: A review. Resour. Conserv. Recycl., 58, 69–78. DOI: 10.1016/j.resconrec.2011.10.009
  5. Aziz, Z., Khan, M.J., Ling, T.P., Hassan, O., Maskat, M.Y. (2014). Effect of direct pretreatment using steam on the properties of oil palm empty fruit bunch. Der Pharma Chem., 6, 1–6
  6. Soltani, S., Rashid, U., Al-Resayes, S.I., Nehdi, I.A. (2017). Recent progress in synthesis and surface functionalization of mesoporous acidic heterogeneous catalysts for esterification of free fatty acid feedstocks: A review. Energy Convers. Manag., 141, 183–205. DOI: 10.1016/j.enconman.2016.07.042
  7. Martínez, S.L., Romero, R., Natividad, R., González, J. (2014). Optimization of biodiesel production from sunflower oil by transesterification using Na2O/NaX and methanol. Catal. Today, 220–222, 12–20. DOI: 10.1016/j.cattod.2013.08.022
  8. Azócar, L., Ciudad, G., Heipieper, H.J., Navia, R. (2010). Biotechnological processes for biodiesel production using alternative oils. Appl. Microbiol. Biotechnol., 88, 621–636. DOI: 10.1007/s00253-010-2804-z
  9. Kumar Tiwari, A., Kumar, A., Raheman, H. (2007). Biodiesel production from jatropha oil (Jatropha curcas) with high free fatty acids: An optimized process. Biomass and Bioenergy, 31, 569–575. DOI: 10.1016/j.biombioe.2007.03.003
  10. Lourinho, G., Brito, P. (2015). Advanced biodiesel production technologies: novel developments. Rev. Environ. Sci. Biotechnol., 14, 287–316. DOI: 10.1007/s11157-014-9359-x
  11. Talebian-Kiakalaieh, A., Amin, N.A.S., Mazaheri, H. (2013). A review on novel processes of biodiesel production from waste cooking oil. Appl. Energy, 104, 683–710. DOI: 10.1016/j.apenergy.2012.11.061
  12. Vieira, S.S., Magriotis, Z.M., Ribeiro, M.F., Graça, I., Fernandes, A., Lopes, J.M.F.M., Saczk, A.A. (2015). Use of HZSM-5 modified with citric acid as acid heterogeneous catalyst for biodiesel production via esterification of oleic acid. Microporous Mesoporous Mater., 201, 160–168. DOI: 10.1016/j.micromeso.2014.09.015
  13. Abdullah, S.H.Y.S., Hanapi, N.H.M., Azid, A., Umar, R., Juahir, H., Khatoon, H., Endut, A. (2016). A review of biomass-derived heterogeneous catalyst for a sustainable biodiesel production. Renew. Sustain. Energy Rev., 70, 1040–1051. DOI: 10.1016/j.rser.2016.12.008
  14. Liu, X.Y., Huang, M., Ma, H.L., Zhang, Z.Q., Gao, J.M., Zhu, Y.L., Guo, X.Y. (2010). Preparation of a carbon-based solid acid catalyst by sulfonating activated carbon in a chemical reduction process. Molecules, 15, 7188–7196. DOI: 10.3390/molecules15107188
  15. Alaei, S., Haghighi, M., Toghiani, J., Rahmani Vahid, B. (2018). Magnetic and reusable MgO/MgFe2O4 nanocatalyst for biodiesel production from sunflower oil: Influence of fuel ratio in combustion synthesis on catalytic properties and performance. Ind. Crops Prod., 117, 322–332. DOI: 10.1016/j.indcrop.2018.03.015
  16. Zhang, F., Tian, X.F., Fang, Z., Shah, M., Wang, Y.T., Jiang, W., Yao, M. (2017). Catalytic production of Jatropha biodiesel and hydrogen with magnetic carbonaceous acid and base synthesized from Jatropha hulls. Energy Convers. Manag., 142, 107–116. DOI: 10.1016/j.enconman.2017.03.026
  17. Hu, S., Guan, Y., Wang, Y., Han, H. (2011). Nano-magnetic catalyst KF/CaO-Fe3O4 for biodiesel production. Appl. Energy, 88, 2685–2690. DOI: 10.1016/j.apenergy.2011.02.012
  18. Araujo, R.O., Santos, V.O., Ribeiro, F.C.P., Chaar, J.d.S., Pereira, A.M., Falcão, N.P.S., de Souza, L.K.C. (2021). Magnetic acid catalyst produced from acai seeds and red mud for biofuel production. Energy Convers. Manag., 228, 113636. DOI: 10.1016/j.enconman.2020.113636
  19. Zhou, Y., Niu, S., Li, J. (2016). Activity of the carbon-based heterogeneous acid catalyst derived from bamboo in esterification of oleic acid with ethanol. Energy Convers. Manag., 114, 188–196. DOI: 10.1016/j.enconman.2016.02.027
  20. Pan, H., Liu, X., Zhang, H., Yang, K., Huang, S., Yang, S. (2017). Multi-SO3H functionalized mesoporous polymeric acid catalyst for biodiesel production and fructose-to-biodiesel additive conversion. Renew. Energy, 107, 245–252. DOI: 10.1016/j.renene.2017.02.009
  21. Shu, Q., Zou, W., He, J., Lesmana, H., Zhang, C., Zou, L., Wang, Y. (2019). Preparation of the F − -SO42-/MWCNTs catalyst and kinetic studies of the biodiesel production via esterification reaction of oleic acid and methanol. Renew. Energy, 135, 836–845. DOI: 10.1016/j.renene.2018.12.067
  22. Wang, A., Wang, J., Lu, C., Xu, M., Lv, J., Wu, X. (2018). Esterification for biofuel synthesis over an eco-friendly and efficient kaolinite-supported SO42−/ZnAl2O4 macroporous solid acid catalyst. Fuel, 234, 430–440. DOI: 10.1016/j.fuel.2018.07.041
  23. Deeba, F., Kumar, B., Arora, N., Singh, S., Kumar, A., Han, S.S., Negi, Y.S. (2020). Novel bio-based solid acid catalyst derived from waste yeast residue for biodiesel production. Renew. Energy, 159, 127–139. DOI: 10.1016/j.renene.2020.05.029
  24. Dechakhumwat, S., Hongmanorom, P., Thunyaratchatanon, C., Smith, S.M., Boonyuen, S., Luengnaruemitchai, A. (2020). Catalytic activity of heterogeneous acid catalysts derived from corncob in the esterification of oleic acid with methanol. Renew. Energy, 148, 897–906. DOI: 10.1016/j.renene.2019.10.174
  25. Chang, B., Li, Y., Guo, Y., Yang, B. (2016). Simple fabrication of magnetically separable mesoporous carbon sphere with excellent catalytic performance for biodiesel production. J. Taiwan Inst. Chem. Eng., 60, 241–246. DOI: 10.1016/j.jtice.2015.10.009
  26. Ibrahim, Z., Aziz, A.A., Ramli, R., Jusoff, K., Ahmad, M., Jamaludin, M.A. (2015). Effect of treatment on the oil content and surface morphology of oil palm (Elaeis guineensis) empty fruit bunches (EFB) fibres. Wood Res., 60, 157–166
  27. Rosli, N.S., Harun, S., Jahim, J.M., Othaman, R. (2017). Chemical and Physical Characterization of Oil Palm Empty Fruit Bunch. Malaysian J. Anal. Sci., 21, 188–196. DOI: 10.17576/mjas-2017-2101-22
  28. Palamae, S., Dechatiwongse, P., Choorit, W., Chisti, Y., Prasertsan, P. (2017). Cellulose and hemicellulose recovery from oil palm empty fruit bunch (EFB) fibers and production of sugars from the fibers. Carbohydr. Polym., 155, 491–497. DOI: 10.1016/j.carbpol.2016.09.004
  29. Hamzah, F., Idris, A., Shuan, T.K. (2011). Preliminary study on enzymatic hydrolysis of treated oil palm (Elaeis) empty fruit bunches fibre (EFB) by using combination of cellulase and β 1-4 glucosidase. Biomass and Bioenergy, 35, 1055–1059. DOI: 10.1016/j.biombioe.2010.11.020
  30. Chen, T., Peng, L., Yu, X., He, L. (2018). Magnetically recyclable cellulose-derived carbonaceous solid acid catalyzed the biofuel 5-ethoxymethylfurfural synthesis from renewable carbohydrates. Fuel, 219, 344–352. DOI: 10.1016/j.fuel.2018.01.129
  31. Li, J., Liang, X. (2017). Magnetic solid acid catalyst for biodiesel synthesis from waste oil. Energy Convers. Manag., 141, 126–132. DOI: 10.1016/j.enconman.2016.06.072
  32. Gardy, J., Osatiashtiani, A., Céspedes, O., Hassanpour, A., Lai, X., Lee, A.F., Wilson, K., Rehan, M. (2018). A magnetically separable SO4/Fe-Al-TiO2 solid acid catalyst for biodiesel production from waste cooking oil. Appl. Catal. B Environ., 234, 268–278. DOI: 10.1016/j.apcatb.2018.04.046
  33. Wang, Y.T., Fang, Z., Yang, X.X., Yang, Y.T., Luo, J., Xu, K., Bao, G.R. (2018). One-step production of biodiesel from Jatropha oils with high acid value at low temperature by magnetic acid-base amphoteric nanoparticles. Chem. Eng. J., 348, 929–939. DOI: 10.1016/j.cej.2018.05.039
  34. Xie, W., Han, Y., Wang, H. (2018). Magnetic Fe3O4/MCM-41 composite-supported sodium silicate as heterogeneous catalysts for biodiesel production. Renew. Energy, 125, 675–681. DOI: 10.1016/j.renene.2018.03.010
  35. Wang, Anping, Li, H., Pan, H., Zhang, H., Xu, F., Yu, Z., Yang, S. (2018). Efficient and green production of biodiesel catalyzed by recyclable biomass-derived magnetic acids. Fuel Process. Technol., 181, 259–267. DOI: 10.1016/j.fuproc.2018.10.003
  36. Chellappan, S., Aparna, K., Chingakham, C., Sajith, V., Nair, V. (2019). Microwave assisted biodiesel production using a novel Brönsted acid catalyst based on nanomagnetic biocomposite. Fuel, 246, 268–276. DOI: 10.1016/j.fuel.2019.02.104
  37. Islam, M.S., Kao, N., Bhattacharya, S.N., Gupta, R., Bhattacharjee, P.K. (2017). Effect of low pressure alkaline delignification process on the production of nanocrystalline cellulose from rice husk. J. Taiwan Inst. Chem. Eng., 80, 820–834. DOI: 10.1016/j.jtice.2017.06.042
  38. Zhang, F., Tian, X., Shah, M., Yang, W. (2017). Synthesis of magnetic carbonaceous acids derived from hydrolysates of Jatropha hulls for catalytic biodiesel production. RSC Adv., 7, 11403–11413. DOI: 10.1039/c6ra28796d
  39. Marwaha, A., Rosha, P., Mohapatra, S.K., Mahla, S.K., Dhir, A. (2019). Biodiesel production from Terminalia bellerica using eggshell-based green catalyst: An optimization study with response surface methodology. Energy Reports, 5, 1580–1588. DOI: 10.1016/j.egyr.2019.10.022
  40. Singh, V., Belova, L., Singh, B., Sharma, Y.C. (2018). Biodiesel production using a novel heterogeneous catalyst, magnesium zirconate (Mg2Zr5O12): Process optimization through response surface methodology (RSM). Energy Convers. Manag., 174, 198–207. DOI: 10.1016/j.enconman.2018.08.029
  41. Trombettoni, V., Lanari, D., Prinsen, P., Luque, R., Marrocchi, A., Vaccaro, L. (2018). Recent advances in sulfonated resin catalysts for efficient biodiesel and bio-derived additives production. Prog. Energy Combust. Sci., 65, 136–162. DOI: 10.1016/j.pecs.2017.11.001
  42. Boz, N., Degirmenbasi, N., Kalyon, D.M. (2015). Esterification and transesterification of waste cooking oil over Amberlyst 15 and modified Amberlyst 15 catalysts. Appl. Catal. B Environ., 165, 723–730. DOI: 10.1016/j.apcatb.2014.10.079
  43. Ishola, N.B., Adeyemi, O.O., Adesina, A.J., Odude, V.O., Oyetunde, O.O., Okeleye, A.A., Betiku, E. (2017). Adaptive neuro-fuzzy inference system-genetic algorithm vs. response surface methodology: A case of optimization of ferric sulfate-catalyzed esterification of palm kernel oil. Process Saf. Environ. Prot., 111, 211–220. DOI: 10.1016/j.psep.2017.07.004

Last update:

No citation recorded.

Last update:

No citation recorded.