skip to main content

Complex Processing of Adsorbent Used in the Purification of Hydrogen-Containing Gas

1Institute of Material Science of the Uzbekistan Academy of Sciences, Ch. Aytmatov str.2B, Tashkent 100084, Uzbekistan

2Center for Advanced Technologies, University str.7, Tashkent 100174, Uzbekistan

3Bukhara Petroleum Refinery Plant Unitary Enterprise, Karaul-bazar, street mustakillik 1, Bukhara region 200900, Uzbekistan

4 Almalyk Branch of the National Research Technological University "MiSIS", Uzbekistan

View all affiliations
Received: 27 Sep 2021; Revised: 29 Oct 2021; Accepted: 30 Oct 2021; Available online: 9 Nov 2021; Published: 30 Mar 2022.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2021 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image
Abstract

The problems of processing spent adsorbents with a high concentration of chemisorbed chlorine-containing compounds for their reuse are studied in this article. The genesis of the phase composition and morphology at all technological stages of thermochemical regeneration of the spent adsorbent - Axstrap-860 by means of alkaline modification with a combined solution of sodium and potassium hydroxides has been tested by diffractometry and elemental analysis. The results show that the formation of a layer with an increased concentration of alkali metals in the form of the corresponding carbonates and NaOH on the surface of the granules and in the volume of sodium and potassium aluminates provides adsorption of HCl, which are slightly inferior to the fresh adsorbent. The conditions for the removal of halogen-containing substances from technogenic raw materials with the subsequent isolation of useful products have been optimized: (1) crystalline NaCl intended for the preparation of electrolyte for electrode boilers and steam generators; (2) a mixture of chlorides and hydroxochlorides of aluminum tested in the process of coagulation purification of turbid natural and waste waters; (3) pseudoboehmite for the production of an adsorbent-desiccant and the synthesis of magnesium-aluminum spinel using the technology of destruction-epitaxial transformation, and a promising carrier for catalysts for steam reforming of hydrocarbons. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Fulltext View|Download
Keywords: Adsorbent; Catalyst carrier; Oil refining; Regeneration of catalysts; Hydrogen
Funding: Ministry of innovative development of the Republic of Uzbekistan under contract Grant Number FZ-2019-06066 and MUK-2021-45

Article Metrics:

  1. Yunusov, M.P., Nasullaev Kh.A., Gulomov Sh.T., Isaeva N.F., Mustafaev B.D., Rakhimjanov B.B., Khodjiev R.G. (2020). Analysis of the results of experimental sorbent for chloride compounds removal. Chemical Problems, 3(18), 366–375. DOI: 10.32737/2221-8688-2020-3-366-375
  2. Yunusov, M.P., Djalalova, Sh.B., Nasullaev, Kh.A., Isaeva, Sh., Mirzaeva, E.I. (2016). New catalytic systems for hydrofining and dearomatization processes of oil fractions. Catalysis for Sustainable Energy, 3(1), 7–14. DOI: 10.1515/cse-2016-0003
  3. Kurbanova, D.G., Teshabayev, Z.A., Nasullayev, H.A., Gulomov, Sh.T., Boymonov, R.M., Turdieva, D.P., Rakhimjonov, B.B. (2020). Processing of spent adsorbents and catalysts into protective layers for oil and gas processing. Vestniknauz, kimyo, 3(1), 263–266
  4. Hongjun, Z., Mingliang, S., Huixin, W., Zeji, L., Hongbo, J. (2010). Modeling and simulation of moving bed reactor for catalytic naphtha reforming. Petroleum Science and Technology, 28, 667–676. DOI: 10.1080/10916460902804598
  5. Kiryanov, D.I., Smolikov, M.D., Golinsky, D.V., Belopukhov, E.A., Zatolokina, E.V., Udras, I.E., White, A.S. (2018). History of development and current status of the catalytic reforming process in Russia. Experience of industrial production and operation of new reforming catalysts series PR. Rossiiskii Khimicheskii Zhurnal (Russian Chemistry Journal), 62(1–2), 12–23. DOI: 10.6060/rcj.2018621-2.2
  6. Rahimpour, M.R., Jafari, M., Iranshahi, D. (2013). Progress in catalytic naphtha reforming process: A review. Applied Energy, 109 79–93. DOI: 10.1016/j.apenergy.2013.03.080
  7. Chernyakova, E.S., Koksharov, A.G., Ivanchina, E.D., Yakupova, I.V. (2015). Heavy naphtha fractions 85-155ºc recycling in the catalytic reforming industrial unit. Procedia Chemistry, 15, 378–383. DOI: 10.1016/j.proche.2015.10.060
  8. Rodríguez, M.A., Ancheyta, J. (2011). Detailed description of kinetic and reactor modeling for naphtha catalytic reforming. Fuel, 90, 3492–3508. DOI: 10.1016/j.fuel.2011.05.022
  9. Mazzieri, V.A., Grau, J.M., Vera, C.R., Yori, J.C., Parera, J.M., Pieck, C.L. (2005). Role of Sn in Pt-Re-Sn/Al2O3-Cl catalysts for naphtha reforming. Catalysis Today, 107–108, 643–650. DOI: 10.1016/j.cattod.2005.07.042
  10. Viswanadham, N.N., Kamble, R., Sharma, A., Kumar, M., Saxena, A.K. (2008). Effect of Re on product yields and deactivation patterns of naphtha reforming catalyst. Journal of Molecular Catalysis A: Chemical, 282, 74–79. DOI: 10.1016/j.molcata.2007.11.025
  11. Smolikov, M.D., Kiryanov, D.I., Kolmagorov, K.V., Udras, I.E., Zatolokina, E.V., White, A.S. (2013). Experience of industrial production and operation of new reforming catalysts PR-81 and ShPR-81. Catalysis in Industry, 6, 36–41. DOI: 10.1134/S2070050414010115
  12. Gurdin, V.I., Kovalenko, M.V., Krasiy, B.V., Mozhaiko, V.N., Sorokin, I.I. (2016). Highly stable reforming catalyst series RB in ball form. Refining and Petrochemicals, 10, 11–14
  13. Baghalha, M., Mohammadi, M., Ghorbanpour, A. (2010). Coke deposition mechanism on the pores of a commercial Pt–Re/c-Al2O3 naphtha reforming catalyst. Fuel Processing Technology, 91, 714–722. DOI: 10.1016/j.fuproc.2010.02.002
  14. Ostrovskii, N.M. (2006). General equation for linear mechanisms of catalyst deactivation. Chemical Engineering Journal, 120, 73–82. DOI: 10.1016/j.cej.2006.03.026
  15. Stijepovic, M.Z., Linke, Р., Kijevcanin, M. (2010). Optimization approach for continuous catalytic regenerative reformer processes. Energy Fuels, 24, 1908–1916. DOI: 10.1021/ef901193v
  16. Patent RU 2171710 B01 J 20/08, B01 J 20/04, published 10.08.2001
  17. Patent RU 2662540 С2 B01D 53/68, B01 J 20/02, published 26.07. 2018
  18. Patent RU 2219995 С2 B01 J 20/08, B01 J 53/68, 27.12.2003
  19. Shah, I.K., Pre, P., Alappat, B.J. (2013). Steam Regeneration of Adsorbents: An Experimental and Technical Review. Chemical Science Transactions, 2(4), 1078–1088. DOI: 10.7598/cst2013.545
  20. Solodova, N.L., Cherkasova, E.I., Salakhov, I.I., Tutubalina, V.P. (2017). Hydrogen as an energy carrier and reagent. Technologies of its production. Problems of Power Engineering, 19, 11–12
  21. Scha¨del, B.T., Duisberg, M., Deutschmann, O. (2009). Steam reforming of methane, ethane, propane, butane, and natural Gas over a rhodium based catalyst. Catalysis Today, 142, 42–51. DOI: 10.1016/j.cattod.2009.01.008
  22. Fernandez, J.R., Abanades, J.C., Murillo, M. (2012). Modeling of sorption enhanced steam Methane reforming in an adiabatic fixed bed reactor. Chemical Engineering Science, 84, 1–11. DOI: 10.1016/j.jece.2021.105863
  23. Astanovskiy, D.L., Astanovskiy, L.Z., Kustov, P.V. (2016). Energy-saving, environmentally friendly production of hydrogen from hydrocarbon raw materials. Neftegazokhimiya, 3, 10–16
  24. Maestry, M., Vlachos, D.G., Beretta, A., Groppi, G., Tronconi, E. (2008). Steam and dry reforming of metahane on Rh: Microkinetic analysis and hierarchy of kinetic models. Journal of Catalysis, 259, 211–222. DOI: 10.1016/j.jcat.2008.08.008
  25. Pisarenko, E.V., Pisarenko, V.N. (2001). Energy- and resource-saving process of synthesis gas production from natural gas in methanol production. Theoretical Fundamentals of Chemical Technologies, 45(4), 371
  26. Kuznetsov, V.V., Vitovsky, O.V., Gasenko, O.A. (2009). Methane steam reforming in an annular microchannel with Rh/Al2O3 catalyst. Journal of Engineering Thermophysics, 18, 187–196. DOI: 10.1134/S1810232809030023
  27. Peighambardoust, S.J., Rowshanzamir, S., Amjadi, M. (2010). Review of the proton exchange membranes for fuel cell applications. International Journal of Hydrogen Energy, 35(17), 9349–9384. DOI: 10.1016/j.ijhydene.2010.05.017
  28. Snytnikov, P.V., Badmaev, S.D., Volkova, G.G., Potemkin, D.I., Zyryanova, M.M., Belyaev, V.D., Sobyanin, V.A. (2012). Catalysts for hydrogen production in a multifuel processor by methanol, dimethyl ether and bioethanol steam reforming for fuel cell applications. International Journal of Hydrogen Energy, 37(21), 16388–16396. DOI: 10.1016/j.ijhydene.2012.02.116
  29. Zyryanova, M., Badmaev, S.D., Belyaev, V.D., Amosov, Y.I.,. Snytnikov, P.V, Kirillov, V.A., Sobyanin, V.A. (2013). Catalytic conversion of hydrocarbon raw materials into fuel for power plants. Catalysis in Industry, 3, 22–27. DOI: 10.1134/S2070050413040107
  30. Molodozhenyuk, T.B., Vorobyov, V.N., Ishanova, L.R., Razikov, K.Kh. (1984). Study of destructive-epitaxial and thermal transformations in the MgO-Al2O3-H2O system. Journal of Applied Chemistry, 7, 1454–1459
  31. Mustafayev, B.D. Turdiyeva, D.P., Kurbanova, D.G., Rakhimjonov, B.B., Isayeva, N.F., Satarova, Sh.G. (2020). Effect of aluminum oxide precursor on the formation of sodium aluminates in the adsorbent composition. Ilm-fan va Innovatsion Rivozhlanish, 5, 124–134
  32. Ledovskaya, E.G., Gabelkov, S.V., Litvinenko, L.M., Logvinkov, D.S., Mironova, A.G., Odeichuk, M.A., Poltavtsev, N.S., Tarasov, R.V. (2006). Low temperature synthesis of magnesium-aluminum spinel. Voprosy Atomnoj Nauki i Tekhniki, 1, 160–163
  33. Domanski, D., Urretavizcaya, G., Castro, F.J., Gennari, F.C. (2004). Mechanochemical synthesis of magnesium aluminate spinel powder at room temperature. Journal of the American Ceramic Society, 87(11), 2020–2024. DOI: 10.1111/j.1151-2916.2004.tb06354.x
  34. Ishimaru, M., Hirotsu, Y., Afanasyev-Charkin, I.V., Sickafus, K.E. (2002). Atomistic structures of metastable and amorphous phases in ion-irradiated magnesium aluminate spinel. Journal of Physics: Condensed Matter, 14(6), 1237–1247. DOI: 10.1088/0953-8984/14/6/311
  35. Senina M.O., Lemeshev, D.O. (2016). Ways of synthesizing powders of magnesium aluminate spinel for obtaining optically transparent ceramics (review). Advances in Chemistry and Chemical Technology, 7, 101–103. DOI: 10.1007/s10717-018-9994-8
  36. Ganesh, J.A. (2013). Review on magnesium aluminate (MgAl2O4) spinel: synthesis, processing and applications. International Materials Reviews, 115(16), 63–112. DOI: 10.1179/1743280412Y.0000000001
  37. Yunusov, M.P., Saidaxmedov, Sh.M., Djalalova, Sh.B., Nasullaev, Kh.A., Gulyamov, Sh.T., Isaeva, N.F., Mirzaeva, E.I. (2015). Synthesis and Study of Ni-Mo-Co Catalysts for Hydroprocessing of Oil Fractions. Catalysis for Sustainable Energy, 2(1), 43–56. DOI: 10.1515/cse-2015-0003
  38. Isayeva, N.F., Jalalova, Sh.B. (2012). Technology of preparation of carriers on the basis of aluminum hydroxide of different shelf life, Uzbek Journal of Oil and Gas, 1, 27–31

Last update:

No citation recorded.

Last update:

No citation recorded.