skip to main content

Superparamagnetic Iron Oxide Decorated Indium Hydroxide Nanocomposite: Synthesis, Characterization and Its Photocatalytic Activity

1Department of Physical Science, Faculty of Applied Sciences, Tunku Abdul Rahman University College, Kuala Lumpur 53300, Malaysia

2Nanotechnology & Catalysis Research Centre, Institute of Advanced Studies, University of Malaya, Jalan Universiti, Kuala Lumpur 50603, Malaysia

3Biopolymer Research Group, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81310, Malaysia

Received: 23 Sep 2021; Revised: 21 Nov 2021; Accepted: 29 Nov 2021; Available online: 14 Dec 2021; Published: 30 Mar 2022.
Editor(s): Istadi Istadi, Suresh Sagadevan
Open Access Copyright (c) 2021 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image
Abstract

A simple and scalable liquid-based method was developed to produce a nanocomposite photocatalyst which was comprised of Fe3O4 nanoparticles (4-5 nm) decorated indium hydroxide nanorods (mean width 33 nm and average aspect ratio 2-3). The nanocomposite was produced at 25 ℃ in water via a hydroxide-induced co-precipitation ensued by a cathodic reduction during which the non-magnetic Fe(OH)3 intermediate was reduced to magnetic Fe3O4 at 20 V within 1 h. The incorporation of Fe3O4 nanoparticles served to bestow magnetic recoverability to the photocatalyst and helped enhance visible light absorption simultaneously. Interestingly, the addition of Fe3+ led to the formation of In(OH)3 nanorods rather than the commonly observed nanocubes. In comparison to the In(OH)3 system having a band gap of 4.60 eV), the band gap of the Fe3O4/In(OH)3 nanocomposite produced was determined to be 2.85 eV using the Tauc’s plot method. The effective reduction in band gap is expected to allow better absorption of visible light which in turns should help boost its photocatalytic performance. The Fe3O4/In(OH)3 nanocomposite was structurally characterized using a combination of PXRD, FESEM, EDS, and TEM and its paramagnetic property was proven with a positive mass susceptibility measured to be 1.30´105 cm3.g1. Under visible light, a photocatalytic degradation efficiency of 83% was recorded within 1 hr for the nanocomposite using methylene blue as a dye. The photocatalytically-active Fe3O4/In(OH)3 should have good potential in visible-light driven waste water degradation once further optimized. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Fulltext View|Download
Keywords: Superparamagnetic nanocomposite; Green Synthesis; Visible Light Based Photodegradation; Methylene Blue
Funding: Ministry of Higher Education Malaysia under contract Fundamental Research Grant Scheme (Grant Number: FRGS/1/2020/STG05/TARUC/02/1)

Article Metrics:

  1. Liu, J., Zhang, J. (2020). Nanointerface Chemistry: Lattice-Mismatch-Directed Synthesis and Application of Hybrid Nanocrystals. Chemical Reviews, 120(4), 2123-2170. DOI: 10.1021/acs.chemrev.9b00443
  2. Li, X., Yu, J., Jaroniec, M., Chen, X. (2019). Cocatalysts for Selective Photoreduction of CO2 into Solar Fuels. Chemical Reviews, 119(6), 3962-4179. DOI: 10.1021/acs.chemrev.8b00400
  3. Astuti, Y., Andianingrum, R., Haris, A., Darmawan, A. (2020). The Role of H2C2O4 and Na2CO3 as Precipitating Agents on The Physichochemical Properties and Photocatalytic Activity of Bismuth Oxide. Open Chemistry, 18(1), 129-137. DOI: 10.1515/chem-2020-0013
  4. Nasralla, N., Yeganeh, M., Astuti, Y., Piticharoenphun, S., Šiller, L. (2018). Systematic study of electronic properties of Fe-doped TiO2 nanoparticles by X-ray photoemission spectroscopy. Journal of Materials Science: Materials In Electronics, 29(20), 17956-17966. DOI: 10.1007/s10854-018-9911-5
  5. Nasralla, N., Yeganeh, M., Astuti, Y., Piticharoenphun, S., Shahtahmasebi, N., Kompany, A., Karimipour, M., Mendis, B.G., Poolton, N.R.J., Šiller, L. (2013). Structural and spectroscopic study of Fe-doped TiO2 nanoparticles prepared by sol–gel method. Scientia Iranica, 20(3), 1018-1022. DOI: 10.1016/j.scient.2013.05.017
  6. Rueda-Marquez, J., Levchuk, I., Fernández Ibañez, P., Sillanpää, M. (2020). A critical review on application of photocatalysis for toxicity reduction of real wastewaters. Journal of Cleaner Production, 258, 120694. DOI: 10.1016/j.jclepro.2020.120694
  7. Al-Mamun, M., Kader, S., Islam, M., Khan, M. (2019). Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: A review. Journal of Environmental Chemical Engineering, 7(5), 103248. DOI: 10.1016/j.jece.2019.103248
  8. Gao, C., Low, J., Long, R., Kong, T., Zhu, J., Xiong, Y. (2020). Heterogeneous Single-Atom Photocatalysts: Fundamentals and Applications. Chemical Reviews, 120(21), 12175-12216. DOI: 10.1021/acs.chemrev.9b00840
  9. Wan, Z., Hu, M., Hu, B., Yan, T., Wang, K., Wang, X. (2020). Vacancy induced photocatalytic activity of La doped In(OH)3 for CO2 reduction with water vapor. Catalysis Science & Technology, 10(9), 2893-2904. DOI: 10.1039/D0CY00029A
  10. Zhang, X., Wang, J., Dong, X., Lv, Y. (2020). Functionalized metal-organic frameworks for photocatalytic degradation of organic pollutants in environment. Chemosphere, 242, 125144. DOI: 10.1016/j.chemosphere.2019.125144
  11. Hu, B., Hu, M., Guo, Q., Wang, K., Wang, X. (2019). In-vacancy engineered plate-like In(OH)3 for effective photocatalytic reduction of CO2 with H2O vapor. Applied Catalysis B: Environmental, 253, 77-87. DOI: 10.1016/j.apcatb.2019.04.046
  12. Marin, G., Qadir, M., Fernandes, J., Castegnaro, M., Morais, J., Baptista, D., Dupont, J. (2019). Photoreforming driven by indium hydroxide/oxide nano-objects. International Journal of Hydrogen Energy, 44(47), 25695-25705. DOI: 10.1016/j.ijhydene.2019.08.060
  13. Wong, P.M., Juan, J.C., Lai, J.C., Lim, T.H. (2020). Galvanic Replacement-Enabled Synthesis of In(OH)3/Ag/C Nanocomposite as an Effective Photocatalyst for Ultraviolet C Degradation of Methylene Blue. ACS Omega, 5(23), 13719-13728. DOI: 10.1021/acsomega.0c00881
  14. Ashraf, M., Khan, I., Usman, M., Khan, A., Shah, S.S., Khan, A.Z., Saeed, K., Yaseen, M., Ehsan, M.F., Tahir, M.N., Ullah, N. (2019). Hematite and Magnetite Nanostructures for Green and Sustainable Energy Harnessing and Environmental Pollution Control: A Review. Chemical Research in Toxicology, 33(6), 1292-1311. DOI: 10.1021/acs.chemrestox.9b00308
  15. Wang, J., Bai, S., Wang, Y., Luo, G., Wang, T. (2020). Preparation of large In(OH)3 and In2O3 particles through a seed-mediated growth method in a microreactor. Particuology, 49, 1-8. DOI: 10.1016/j.partic.2019.04.006
  16. Wang, J., Zhang, F., Wang, Y., Luo, G. (2018). Preparation of In(OH)3 and In2O3 Nanorods through a Novel Hydrothermal Method and the Effect of Sn Dopant on Crystal Structures. Industrial & Engineering Chemistry Research, 57(8), 2882-2889. DOI: 10.1021/acs.iecr.7b05085
  17. Holzwarth, U., Gibson, N. (2011). The Scherrer equation versus the 'Debye-Scherrer equation'. Nature Nanotechnology, 6(9), 534-534. DOI: 10.1038/nnano.2011.145
  18. Yan, H., Liu, Z., Yang, S., Yu, X., Liu, T., Guo, Q., Li, J., Wang, R., Peng, Q. (2020). Stable and Catalytically Active Shape-Engineered Cerium Oxide Nanorods by Controlled Doping of Aluminum Cations. ACS Applied Materials & Interfaces, 12(33), 37774-37783. DOI: 10.1021/acsami.0c11049
  19. Feng, Q., Li, S., Ma, W., Fan, H., Wan, X., Lei, Y., Chen, Z., Yang, J., Qin, B. (2018). Synthesis and characterization of Fe3O4/ZnO-GO nanocomposites with improved photocatalytic degradation methyl orange under visible light irradiation. Journal of Alloys and Compounds, 737, 197-206. DOI: 10.1016/j.jallcom.2017.12.070
  20. Pirhashemi, M., Elhag, S., Habibi-Yangjeh, A., Pozina, G., Willander, M., Nur, O. (2018). Polyethylene glycol-doped BiZn2VO6 as a high-efficiency solar-light-activated photocatalyst with substantial durability toward photodegradation of organic contaminations. RSC Advances, 8(65), 37480-37491. DOI: 10.1039/C8RA06896H
  21. Zhou, K., Zhou, X., Liu, J., Huang, Z. (2020). Application of magnetic nanoparticles in petroleum industry: A review. Journal of Petroleum Science and Engineering, 188, 106943. DOI: 10.1016/j.petrol.2020.106943
  22. Singh, K., Senapati, K., Borgohain, C., Sarma, K. (2017). Newly developed Fe3O4–Cr2O3 magnetic nanocomposite for photocatalytic decomposition of 4-chlorophenol in water. Journal of Environmental Sciences, 52, 333-340. DOI: 10.1016/j.jes.2015.01.035
  23. Barati Darband, G., Aliofkhazraei, M., Khorsand, S., Sokhanvar, S., Kaboli, A. (2020). Science and Engineering of Superhydrophobic Surfaces: Review of Corrosion Resistance, Chemical and Mechanical Stability. Arabian Journal of Chemistry, 13(1), 1763-1802. DOI: 10.1016/j.arabjc.2018.01.013
  24. Rafieian, F., Mousavi, M., Dufresne, A., Yu, Q. (2020). Polyethersulfone membrane embedded with amine functionalized microcrystalline cellulose. International Journal of Biological Macromolecules, 164, 4444-4454. DOI: 10.1016/j.ijbiomac.2020.09.017
  25. An, X., Cheng, D., Dai, L., Wang, B., Ocampo, H., Nasrallah, J. (2017). Synthesis of nano-fibrillated cellulose/magnetite/titanium dioxide (NFC@Fe3O4@TNP) nanocomposites and their application in the photocatalytic hydrogen generation. Applied Catalysis B: Environmental, 206, 53-64. DOI: 10.1016/j.apcatb.2017.01.021
  26. Heuer-Jungemann, A., Feliu, N., Bakaimi, I., Hamaly, M., Alkilany, A., Chakraborty, I (2019). The Role of Ligands in the Chemical Synthesis and Applications of Inorganic Nanoparticles. Chemical Reviews, 119(8), 4819-4880. DOI: 10.1021/acs.chemrev.8b00733
  27. Koczkur, K., Mourdikoudis, S., Polavarapu, L., Skrabalak, S. (2015). Polyvinylpyrrolidone (PVP) in nanoparticle synthesis. Dalton Transactions, 44(41), 17883-17905. DOI: 10.1039/C5DT02964C
  28. Mallick, H., Zhang, Y., Pradhan, J., Sahoo, M., Pattanaik, A. (2021). Influence of particle size and defects on the optical, magnetic and electronic properties of Al doped SnO2 nanoparticles. Journal of Alloys and Compounds, 854, 156067. DOI: 10.1016/j.jallcom.2020.156067
  29. Bello, A., Kim, D., Kim, D., Park, H., Lee, S. (2020). Engineering and Functionalization of Gelatin Biomaterials: From Cell Culture to Medical Applications. Tissue Engineering Part B: Reviews, 26(2), 164-180. DOI: 10.1089/ten.teb.2019.0256
  30. Ghosh, M., Mondal, M., Mandal, S., Roy, A., Chakrabarty, S., Chakrabarti, G., Pradhan, S. (2020). Enhanced photocatalytic and antibacterial activities of mechanosynthesized TiO2–Ag nanocomposite in wastewater treatment. Journal of Molecular Structure, 1211, 128076. DOI: 10.1016/j.molstruc.2020.128076

Last update:

No citation recorded.

Last update:

No citation recorded.