skip to main content

Synthesis of Porous N-doped TiO2 by Using Peroxo Sol-Gel Method for Photocatalytic Reduction of Cd(II)

Department of Chemistry, Universitas Andalas, Kampus Limau Manis, Padang, Indonesia, 25163, Indonesia

Received: 23 Sep 2021; Revised: 26 Nov 2021; Accepted: 27 Nov 2021; Available online: 14 Dec 2021; Published: 30 Mar 2022.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2021 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image
Abstract

Porous N-doped TiO2 photocatalyst was successfully synthesized by an environmentally friendly peroxo sol-gel method using polyethylene glycol (PEG) as a templating agent. Here, the effect of PEG addition to the aqueous peroxotitanium solutions on the structure, pore properties and photocatalytic activity of the obtained photocatalysts was systematically studied. The prepared photocatalysts were characterized by X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy (DRS), and Brunauer-Emmett-Teller (BET). It was found that the doping of nitrogen narrows the band gap of TiO2 leading to enhance its visible-light response. The BET analysis shows that the prepared photocatalysts have a typical mesoporous structure with pore sizes of 3–6 nm. The photocatalytic activity of the prepared photocatalysts was evaluated by photocatalytic reduction of Cd(II) in an aqueous solution under visible light irradiation. The results show that porous N-doped TiO2 with the optimal PEG addition had the highest Cd(II) reduction of 85.1% after 2.5 h irradiation in neutral aqueous solution. This significant improvement in photocatalytic activity of the prepared photocatalysts was mainly attributed to the synergistic combination of N doping and porous structure, which could actively increase the catalytic active site of this photocatalysts. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Fulltext View|Download
Keywords: TiO2; nitrogen doping; mesoporous; photocatalyst; Cd(II) reduction
Funding: Indonesian Ministry of Research, Technology and Higher Education under contract Student Creativity Program-2019

Article Metrics:

  1. Khairy, M., El-Safty, S.A., Shenashen, M.A. (2014). Environmental remediation and monitoring of cadmium. TrAC - Trends in Analytical Chemistry, 62, 56–68. DOI: 10.1016/j.trac.2014.06.013
  2. Sharma, H., Rawal, N., Mathew, B.B. (2015). The Characteristics, Toxicity and Effects of Cadmium. International Journal of Nanotechnology and Nanoscience, 3, 1–9
  3. Kinuthia, G.K., Ngure, V., Beti, D., Lugalia, R., Wangila, A., Kamau, L. (2020). Levels of heavy metals in wastewater and soil samples from open drainage channels in Nairobi, Kenya: community health implication. Scientific Reports, 10, 1–13. DOI: 10.1038/s41598-020-65359-5
  4. Naeemullah. N., Kazi, T.G., Afridi, H.I., Shah, F., Arain, S.S., Brahman, K.D., Ali, J., Arain, M.S. (2016). Simultaneous determination of silver and other heavy metals in aquatic environment receiving wastewater from industrial area, applying an enrichment method. Arabian Journal of Chemistry, 9, 105–113. DOI: 10.1016/j.arabjc.2014.10.027
  5. Ravera, O. (1986). Cadmium in freshwater ecosystems. In: Mislin H, Ravera O (eds) Cadmium in the Environment. Birkhäuser Basel, Basel, pp 75–87
  6. Kubier, A., Wilkin, R.T., Pichler, T. (2019). Cadmium in soils and groundwater: A review. Applied Geochemistry, 108, 104388. DOI: 10.1016/j.apgeochem.2019.104388
  7. Rahimzadeh, M.R., Rahimzadeh, M.R., Kazemi, S., Moghadamnia, A.A. (2017). Cadmium toxicity and treatment: An update. Caspian Journal of Internal Medicine, 8, 135–145. DOI: 10.22088/cjim.8.3.135
  8. Genchi, G., Sinicropi, M.S., Lauria, G., Carocci, A., Catalano, A. (2020). The Effects of Cadmium Toxicity. International Journal of Environmental Research and Public Health, 17, 3782. DOI: 10.3390/ijerph17113782
  9. Zhang, H., Reynolds, M. (2019). Cadmium exposure in living organisms: A short review. Science of the Total Environment, 678, 761–767. DOI: 10.1016/j.scitotenv.2019.04.395
  10. Aoshima, K. (2019). Recent Clinical and Epidemiological Studies of Itai-Itai Disease (Cadmium-Induced Renal Tubular Osteomalacia) and Cadmium Nephropathy in the Jinzu River Basin in Toyama Prefecture, Japan. In: Cadmium Toxicity. Springer, Singapore, pp 23–37
  11. Morikawa, Y., Nakagawa, H., Tabata, M., Nishijo, M., Senma, M., Kitagawa, Y., Kawano, S., Teranishi, H., Kido, T. (1992). Study of an outbreak of Itai-itai disease. Japanese Journal of Hygiene, 46, 1057–1062. DOI: 10.1265/jjh.46.1057
  12. Wong, C.W., Barford, J.P., Chen, G., McKay, G. (2014). Kinetics and equilibrium studies for the removal of cadmium ions by ion exchange resin. Journal of Environmental Chemical Engineering, 2, 698–707. DOI: 10.1016/j.jece.2013.11.010
  13. Bayar, S., Yilmaz, A.E., Boncukcuoǧlu, R., Fil, B.A., Kocakerim, M.M. (2013). Effects of operational parameters on cadmium removal from aqueous solutions by electrochemical coagulation. Desalination and Water Treatment, 51, 2635–2643. DOI: 10.1080/19443994.2012.749201
  14. Esalah, J.O., Weber, M.E., Vera, J.H. (2000). Removal of lead, cadmium and zinc from aqueous solutions by precipitation with sodium di-(n-octyl) phosphinate. Canadian Journal of Chemical Engineering, 78, 948–954. DOI: 10.1002/cjce.5450780512
  15. Karim, M.R., Aijaz, M.O., Alharth, N.H., Alharbi, H.F., Al-Mubaddel, F.S., Awual, M.R. (2019). Composite nanofibers membranes of poly(vinyl alcohol)/chitosan for selective lead(II) and cadmium(II) ions removal from wastewater. Ecotoxicology and Environmental Safety, 169, 479–486. DOI: 10.1016/j.ecoenv.2018.11.049
  16. Tabesh, S., Davar, F., Loghman-Estarki, M.R. (2018). Preparation of γ-Al2O3 nanoparticles using modified sol-gel method and its use for the adsorption of lead and cadmium ions. Journal of Alloys and Compounds, 730, 441–449. DOI: 10.1016/j.jallcom.2017.09.246
  17. Rao, K., Mohapatra, M., Anand, S., Venkateswarlu, P. (2011). Review on cadmium removal from aqueous solutions. International Journal of Engineering, Science and Technology, 2, 81–103. DOI: 10.4314/ijest.v2i7.63747
  18. Chen, D., Ray, A.K. (2001). Removal of toxic metal ions from wastewater by semiconductor photocatalysis. Chemical Engineering Science, 56, 1561–1570. DOI: https://doi.org/10.1016/S0009-2509(00)00383-3
  19. Shaikh, A., Mishra, S.P., Mohapatra, P., Parida, S. (2017). One-step solvothermal synthesis of TiO2-reduced graphene oxide nanocomposites with enhanced visible light photoreduction of Cr(VI). Journal of Nanoparticle Research, 19, 1-9. DOI: 10.1007/s11051-017-3894-7
  20. Le, A.T., Pung, S.-Y., Sreekantan, S., Matsuda, A., Huynh, D.P. (2019). Mechanisms of removal of heavy metal ions by ZnO particles. Heliyon, 5, e01440. DOI: 10.1016/j.heliyon.2019.e01440
  21. Nasr, M., Eid, C., Habchi, R., Miele, P., Bechelany, M. (2018). Recent Progress on Titanium Dioxide Nanomaterials for Photocatalytic Applications. ChemSusChem, 11, 3023–3047. DOI: 10.1002/cssc.201800874
  22. Hosseini, F., Mohebbi, S. (2020). High efficient photocatalytic reduction of aqueous Zn2+, Pb2+ and Cu2+ ions using modified titanium dioxide nanoparticles with amino acids. Journal of Industrial and Engineering Chemistry, 85, 190–195. DOI: 10.1016/j.jiec.2020.01.040
  23. Liu, F., Zhang, W., Tao, L., Hao, B., Zhang, J. (2019). Simultaneous photocatalytic redox removal of chromium(VI) and arsenic(III) by hydrothermal carbon-sphere@nano-Fe3O4. Environmental Science: Nano, 6, 937–947. DOI: 10.1039/c8en01362d
  24. Salmanvandi, H., Rezaei, P., Tamsilian, Y. (2020). Photoreduction and Removal of Cadmium Ions over Bentonite Clay-Supported Zinc Oxide Microcubes in an Aqueous Solution. ACS Omega, 5, 13176–13184. DOI: 10.1021/acsomega.0c01219
  25. Ekwere, I.O., Horsfall, M., Otaigbe, J.O.E. (2019). A Study on the Photocatalytic Reduction of Some Metal Ions in Aqueous Solution Using UV- Titanium Dioxide System. International Research Journal of Pure and Applied Chemistry, 18, 1–7. DOI: 10.9734/irjpac/2019/v18i230087
  26. Stroyuk, A.L., Shvalagin, V.V., Raevskaya, A.E., Korzhak, A.V., Kuchmii, S.Y. (2003). Photocatalysis of the reduction of Cd2+ ions by Cds nanoparticles in isopropyl alcohol. Theoretical and Experimental Chemistry, 39, 341–346. DOI: 10.1023/B:THEC.0000013985.94005.c3
  27. Chowdhury, P., Elkamel, A., Ray, A.K. (2015). Photocatalytic Processes for the Removal of Toxic Metal Ions. In: Heavy Metals In Water. Royal Society of Chemistry, Cambridge, pp 25–43
  28. Chowdhury, P., Athapaththu, S., Elkamel, A., Ray, A.K. (2017). Visible-solar-light-driven photo-reduction and removal of cadmium ion with Eosin Y-sensitized TiO2 in aqueous solution of triethanolamine. Separation and Purification Technology, 174, 109–115. DOI: 10.1016/j.seppur.2016.10.011
  29. Gopinath, K.P., Madhav, N.V., Krishnan, A., Malolan, R., Rangarajan, G. (2020). Present applications of titanium dioxide for the photocatalytic removal of pollutants from water: A review. Journal of Environmental Management, 270, 110906. DOI: 10.1016/j.jenvman.2020.110906
  30. Cai, J., Wu, X., Zheng, F., Li, S., Wu, Y., Lin, Y., Lin, L., Liu, B., Chen, Q., Lin, L. (2017). Influence of TiO2 hollow sphere size on its photo-reduction activity for toxic Cr(VI) removal. Journal of Colloid and Interface Science, 490, 37–45. DOI: 10.1016/j.jcis.2016.11.025
  31. Sane, P., Chaudhari, S., Nemade, P., Sontakke, S. (2018). Photocatalytic reduction of chromium(VI) using combustion synthesized TiO2. Journal of Environmental Chemical Engineering, 6, 68–73. DOI: 10.1016/j.jece.2017.11.060
  32. Wellia, D.V., Wulandari, W., Mustaqimah, A., Pratiwi, N., Putri, Y.E. (2020). Fabrication of Superhydrophobic Film on the Surface of Indonesian Bamboo Timber by TiO2 Deposition and Using Octadecyltrichlorosilane as a Surface Modifier Agent. Indonesian Journal of Chemistry, 20, 870. DOI: 10.22146/ijc.46740
  33. Pratiwi, N., Zulhadjri, Z., Arief, S., Wellia, D.V. (2020). A Facile Preparation of Transparent Ultrahydrophobic Glass via TiO2/Octadecyltrichlorosilane (ODTS) Coatings for Self-Cleaning Material. ChemistrySelect, 5, 1450–1454. DOI: 10.1002/slct.201904153
  34. Zhang, J., Zhou, P., Liu, J., Yu, J. (2014). New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Physical Chemistry Chemical Physics, 16, 20382–20386. DOI: 10.1039/c4cp02201g
  35. Thind, S.S., Wu, G., Chen, A. (2012). Synthesis of mesoporous nitrogen–tungsten co-doped TiO2 photocatalysts with high visible light activity. Applied Catalysis B, Environmental", 111–112, 38–45. DOI: 10.1016/j.apcatb.2011.09.016
  36. Reddy, K.M., Baruwati, B., Jayalakshmi, M., Rao, M.M., Manorama, S.V. (2005). S-, N- and C-doped titanium dioxide nanoparticles: Synthesis, characterization and redox charge transfer study. Journal of Solid State Chemistry, 178, 3352–3358. DOI: 10.1016/j.jssc.2005.08.016
  37. Dua, J., Chen, H., Yang, H., Sang, R., Qian, Y., Li, Y., Zhu, G., Mau, Y., He, W., Joon, D. (2013). A facile sol – gel method for synthesis of porous Nd-doped TiO2 monolith with enhanced photocatalytic activity under UV – Vis irradiation. Microporous and Mesoporous Materials, 182, 87–94. DOI: 10.1016/j.micromeso.2013.08.023
  38. Liu, Z., Ya, J., Lei, E., Xin, Y., Zhao, W. (2010). Effect of V doping on the band-gap reduction of porous TiO2 films prepared by sol-gel route. Materials Chemistry and Physics, 120, 277–281. DOI: 10.1016/j.matchemphys.2009.11.008
  39. Chen, Y., Liu, K. (2016). Preparation of granulated N-doped TiO2/diatomite composite and its applications of visible light degradation and disinfection. Powder Technology, 303, 176–191. DOI: 10.1016/j.powtec.2016.09.038
  40. Ansari, S.A., Khan, M.M., Ansari, M.O., Cho, M.H. (2016). Nitrogen-doped titanium dioxide (N-doped TiO2) for visible light photocatalysis. New Journal of Chemistry, 40, 3000–3009. DOI: 10.1039/C5NJ03478G
  41. Li, X., Liu, P., Mau, Y., Xing, M., Zhang, J. (2015). Preparation of homogeneous nitrogen-doped mesoporous TiO2 spheres with enhanced visible-light photocatalysis. Applied Catalysis B: Environmental, 164, 352–359. DOI: 10.1016/j.apcatb.2014.09.053
  42. Xia, L., Yang, Y., Cao, Y., Liu, B., Li, X., Chen, X., Song, H., Zhang, X., Gao, B., Fu, J. (2019). Porous N-doped TiO2 nanotubes arrays by reverse oxidation of TiN and their visible-light photocatalytic activity. Surface and Coatings Technology, 365, 237–241. DOI: 10.1016/j.surfcoat.2018.06.033
  43. Wellia, D.V., Kusumawati, Y., Diguna, L.J., Pratiwi, N., Putri, R.A., Amal, M.I. (2020). Mesoporous Materials for Degradation of Textile Dyes. In: Green Methods for Wastewater Treatment. pp 255–288
  44. Horikawa, T., Katoh, M., Tomida, T. (2008). Preparation and characterization of nitrogen-doped mesoporous titania with high specific surface area. Microporous and Mesoporous Materials, 110, 397–404. DOI: 10.1016/j.micromeso.2007.06.048
  45. Zhao, W., Liu, S., Zhang, S., Wang, R., Wang, K. (2019). Preparation and visible-light photocatalytic activity of N-doped TiO2 by plasma-assisted sol-gel method. Catalysis Today, 337, 37–43. DOI: 10.1016/j.cattod.2019.04.024
  46. Danks, A.E., Hall, S.R., Schnepp, Z. (2016). The evolution of “sol-gel” chemistry as a technique for materials synthesis. Materials Horizons, 3, 91–112. DOI: 10.1039/c5mh00260e
  47. Wellia, D.V., Fitria, D., Safni, S. (2018). C-N-Codoped TiO2 Synthesis by using Peroxo Sol Gel Method for Photocatalytic Reduction of Cr(VI). The Journal of Pure and Applied Chemistry Research, 7, 26–32. DOI: 10.21776/ub.jpacr.2018.007.01.373
  48. Xu, Q.C., Wellia, D. V., Amal, R., Liao, D.W., Loo, S.C.J., Tan, T.T.Y. (2010). Superhydrophilicity-assisted preparation of transparent and visible light activated N-doped titania film. Nanoscale, 2, 1122–1127. DOI: 10.1039/c005273f
  49. Pratiwi, N., Zulhadjri, Z., Arief, S., Admi, A., Wellia, D.V. (2020). Self-cleaning material based on superhydrophobic coatings through an environmentally friendly sol–gel method. Journal of Sol-Gel Science and Technology, 96, 669–678. DOI: 10.1007/s10971-020-05389-7
  50. Qiu, X., Zhao, Y., Burda, C. (2007). Synthesis and characterization of nitrogen-doped group IVB visible-light-photoactive metal oxide nanoparticles. Advanced Materials, 19, 3995–3999. DOI: 10.1002/adma.200700511
  51. Xu, Q.C., Wellia, D.V., Yan, S., Liao, D.W., Lim, T.M., Tan, T.T.Y. (2011). Enhanced photocatalytic activity of C-N-codoped TiO2 films prepared via an organic-free approach. Journal of Hazardous Materials, 188, 172–180. DOI: 10.1016/j.jhazmat.2011.01.088
  52. Butun, S., Demirci, S., Yasar, A.O., Sagbas, S., Aktas, N., Sahiner, N. (2017). 0D, 1D, 2D, and 3D Soft and Hard Templates for Catalysis, 1st ed. In: Studies in Surface Science and Catalysis, 1st ed. Elsevier B.V., pp 317–357
  53. Tu, L., Pan, H., Xie, H., Yu, A., Xu, M., Chai, Q., Cui, Y., Zhou, X. (2012). Study on the fabrication and photovoltaic property of TiO2 mesoporous microspheres. Solid State Sciences, 14, 616–621. DOI: 10.1016/j.solidstatesciences.2012.02.012
  54. Lončarević, D., Dostanić, J., Radonjić, V., Radosavljević-Mihajlović, A., Jovanović, D.M. (2015). Structure-activity relationship of nanosized porous PEG-modified TiO2 powders in degradation of organic pollutants. Advanced Powder Technology, 26, 1162–1170. DOI: 10.1016/j.apt.2015.05.012
  55. Huang, L., Fu, W., Fu, X., Zong, B., Liu, H., Bala, H., Wang, X., Sun, G., Cao, J., Zhang, Z. (2017). Facile and large-scale preparation of N doped TiO2 photocatalyst with high visible light photocatalytic activity. Materials Letters, 209, 585–588. DOI: 10.1016/j.matlet.2017.08.092
  56. Chen, F., Yu, W., Qie, Y., Zhao, L., Zhang, H., Guo, L.H. (2019). Enhanced photocatalytic removal of hexavalent chromium through localized electrons in polydopamine-modified TiO2 under visible irradiation. Chemical Engineering Journal, 373, 58–67. DOI: 10.1016/j.cej.2019.05.022
  57. Ullah, M., Haque, M.E. (2010). Spectrophotometric Determination of Toxic Elements (Cadmium) in Aqueous Media. Journal of Chemical Engineering, ChE. 25, 1–12. DOI: 10.3329/jce.v25i0.7233

Last update:

No citation recorded.

Last update:

No citation recorded.