skip to main content

The Effect of Solvent-Modification on the Physicochemical Properties of ZnO Nanoparticles Synthesized by Sol-Gel Method

Department of Chemical Engineering, University of Technology, Baghdad, Iraq

Received: 22 Sep 2021; Revised: 4 Nov 2021; Accepted: 5 Nov 2021; Available online: 9 Nov 2021; Published: 30 Mar 2022.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2021 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image
Abstract

This study investigated the solvent effect on the synthesis of Zinc Oxide (ZnO) nanoparticle using sol-gel method. Zinc acetate dihydrate and oxalic acid were used as a chemical precursor for the synthesis of the ZnO nanoparticle considering the effects of various solvents. The effect of using water, propanol, or ethanol as solvent during the synthesis were examined. The resultant gel in the aqueous and organic moderate solvent was thermally cracked into ZnO nanoparticles at 450 °C under atmospheric pressure. The results showed that the solvent type has a significant effect on the morphology and particles size of the ZnO nanoparticles synthesized. Atomic Force Microscopy (AFM) was used to investigate the microstructure of the nanoparticles. The crystalline and chemical structure of the prepared ZnO nanoparticle were studied by X-ray diffraction (XRD) and Fourier Transform Infrared spectroscopy (FTIR). The average diameter of nano-size particles obtained for ethanol, propanol and water are 79.55 nm, 83.86 nm and 85.59 nm, respectively. ZnO particles showed higher degree of crystalline in water compared to other solvents under current investigation. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Fulltext View|Download
Keywords: ZnO Nanoparticle; Sol-gel; Organic Solvent; Semiconductors; Physicochemical properties
Funding: University of Technology, Iraq

Article Metrics:

  1. Fan, D., Afzaal, M., Mallik, M.A., Nguyen, C.Q., O’Brien, P., Thomas, P.J. (2007). Using coordination chemistry to develop new routes to semiconductor and other materials. Coordination Chemistry Reviews, 251(13-14), 1878-1888. DOI: 10.1016/j.ccr.2007.03.021
  2. Malik, M.A., Afzaal, M., O’Brien, P. (2010). Precursor chemistry for main group elements in semiconducting materials. Chemical Reviews, 110(7), 4417-4446. DOI: 10.1021/cr900406f
  3. Gonzalez-Hernandez, R., Martinez, A.I., Falcony, C., Lopez, A.A., Pech-Canul, M.I., Hdz-Garcia, H.M. (2010). Study of the properties of undoped and fluorine doped zinc oxide nanoparticles. Materials Letters, 64(13), 1493-1495. DOI: 10.1016/j.matlet.2010.04.001
  4. Kołodziejczak-Radzimska, A., Jesionowski, T. (2014). Zinc oxide—from synthesis to application: a review. Materials, 7(4), 2833-288. DOI: 10.3390/ma7042833
  5. Becheri, A. (2008). Synthesis and characterization of zinc oxide nanoparticles: application to textiles as UV-absorbers, Journal of Nanoparticle Research, 10(4) 679–689. DOI: 10.1007/s11051-007-9318-3
  6. Giovannelli, F., Bah, M., Delorme, F., Monot-Laffez, I. (2021). Influence of composition on morphology of semiconducting oxides microwires. Journal of Physics and Chemistry of Solids, 158, 110248. DOI: 10.1016/j.jpcs.2021.110248
  7. Fu, Y.S., Du, X.W., Kulinich, S.A. (2007). Stable aqueous dispersion of ZnO quantum dots with strong blue emission via simple solution route, Journal of the American Chemical Society, 129(51), 16029–16033. DOI: 10.1021/ja075604i
  8. Karyaoui, M., Jemia, D.B., Gannouni, M., Assaker, I.B., Bardaoui, A., Amlouk, M., Chtourou, R. (2020). Characterization of Ag-doped ZnO thin films by spray pyrolysis and its using in enhanced photoelectrochemical performances. Inorganic Chemistry Communications, 119, 108114. DOI: 10.1016/j.inoche.2020.108114
  9. Marzec, A., Szadkowski, B., Rogowski, J., Rybiński, P., Maniukiewicz, W. (2021). Novel eco-friendly hybrid pigment with improved stability as a multifunctional additive for elastomer composites with reduced flammability and pH sensing properties. Dyes and Pigments, 186, 108965. DOI: 10.1016/j.dyepig.2020.108965
  10. Zhang, Q., Xu, M., You, B., Zhang, Q., Yuan, H., Ostrikov, K.K. (2018). Oxygen vacancy mediated ZnO nanoparticle photocatalyst for degradation of methylene blue. Applied Sciences, 8(3), 353. DOI: 10.3390/app8030353
  11. Roy, N., Chakraborty, S. (2021). ZnO as photocatalyst: An approach to waste water treatment. Materials Today: Proceedings, 46, 6399-6403. DOI: 10.1016/j.matpr.2020.06.264
  12. Byzynski, G., Pereira, A.P., Volanti, D.P., Ribeiro, C., Longo, E. (2018). High-performance ultraviolet-visible driven ZnO morphologies photocatalyst obtained by microwave-assisted hydrothermal method. Journal of Photochemistry and Photobiology A: Chemistry, 353, 358-367. DOI: 10.1016/j.jphotochem.2017.11.032
  13. Quiñones, R., Shoup, D., Behnke, G., Peck, C., Agarwal, S., Gupta, R.K., Wang, Q. (2017). Study of perfluorophosphonic acid surface modifications on zinc oxide nanoparticles. Materials, 10(12), 1363. DOI: 10.3390/ma10121363
  14. Kulinich, Y.S. (2007). Stable aqueous dispersion of ZnO quantum dots with strong blue emission via simple solution route. Journal of the American Chemical Society, 129(51), 16029–16033. DOI: 10.1021/ja075604i
  15. Tonto, P., Mekasuwandumrong, O., Phatanasri, S., Pavarajarn, V., Praserthdam, P. (2008) Preparation of ZnO nanorod by solvothermal reaction of zinc acetate in various alcohols. Ceramics International, 34(1), 57–62. DOI: 10.1016/j.ceramint.2006.08.003
  16. Harun, K., Mansor, N., Ahmad, Z.A., Mohamad, A.A. (2016). Electronic properties of ZnO nanoparticles synthesized by Sol-gel method: a LDA+ U calculation and experimental study. Procedia Chemistry, 19, 125-132. DOI: 10.1016/j.proche.2016.03.125
  17. Mohan, A.C., Renjanadevi, B. (2016). Preparation of zinc oxide nanoparticles and its characterization using scanning electron microscopy (SEM) and X-ray diffraction (XRD). Procedia Technology, 24, 761-766. DOI: 10.1016/j.protcy.2016.05.078
  18. Hasnidawani, J.N., Azlina, H.N., Norita, H., Bonnia, N.N., Ratim, S., Ali, E.S. (2016). Synthesis of ZnO nanostructures using sol-gel method. Procedia Chemistry, 19, 211-216. DOI: 10.1016/j.proche.2016.03.095
  19. Hasanpoor, M., Aliofkhazraei, M., Delavari, H. (2015). Microwave-assisted synthesis of zinc oxide nanoparticles. Procedia Materials Science, 11, 320-325. DOI: 10.1016/j.mspro.2015.11.101
  20. Kanade, K.G., Kale, B.B., Aiyer, R.C., Das, B.K. (2006). Effect of solvents on the synthesis of nano-size zinc oxide and its properties. Materials Research Bulletin, 41(3), 590-600. DOI: 10.1016/j.materresbull.2005.09.002
  21. Xu, H., Wang, H., Zhang, Y., He, W., Zhu, M., Wang, B., Yan, H. (2004). Hydrothermal synthesis of zinc oxide powders with controllable morphology. Ceramics International, 30(1), 93-97. DOI: 10.1016/S0272-8842(03)00069-5
  22. Chandra, S., Karak, N. (2018). Environmentally friendly polyurethane dispersion derived from dimer acid and citric acid. ACS Sustainable Chemistry & Engineering, 6(12), 16412-16423. DOI: 10.1021/acssuschemeng.8b03474
  23. Quiñones, R., Shoup, D., Behnke, G., Peck, C., Agarwal, S., Gupta, R.K., Wang, Q. (2017). Study of perfluorophosphonic acid surface modifications on zinc oxide nanoparticles. Materials, 10(12), 1363. DOI: 10.3390/ma10121363
  24. Kannan, S., Sekar, A., Sivaperuman, K. (2020). Effects of the molecular structure on the second-order nonlinear optical properties of stilbazolium derivative single crystals: a review. Journal of Materials Chemistry C, 8(47), 16668-16690. DOI: 10.1039/D0TC04260A
  25. Qin, H., Guo, W., Liu, J., Xiao, H. (2019). Size-controlled synthesis of spherical ZrO2 nanoparticles by reverse micelles-mediated sol-gel process. Journal of the European Ceramic Society, 39(13), 3821-3829. DOI: 10.1016/j.jeurceramsoc.2019.04.035
  26. Jaafar, N.F., Najman, A.M.M., Marfur, A., Jusoh, N.W.C. (2020). Strategies for the formation of oxygen vacancies in zinc oxide nanoparticles used for photocatalytic degradation of phenol under visible light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 388, 112202. DOI: 10.1016/j.jphotochem.2019.112202
  27. Shnain, Z.Y., Ali, J.M., Sukkar, K.A., Alsaffar, M.A., Abid, M.F. (2021). A computational fluid dynamics study of liquid-solid nano-fluid flow in horizontal pipe. Arabian Journal for Science and Engineering, 1-10. DOI: 10.1007/s13369-021-05512-y

Last update:

No citation recorded.

Last update:

No citation recorded.