Effect of Drying Conditions on the Catalytic Performance, Structure, and Reaction Rates over the Fe-Co-Mn/MgO Catalyst for Production of Light Olefins

Majid Abdouss  -  Department of Chemistry, Amirkabir University of Technology, Hafez Ave, Tehran, Iran, Islamic Republic of
*Maryam Arsalanfar  -  Department of Chemistry, Amirkabir University of Technology, Hafez Ave, Tehran, Iran, Islamic Republic of
Nima Mirzaei  -  Department of Chemical and Petroleum Engineering, Sharif University of Technology, Azadi Avenue, P.O. Box 11365-9465, Tehran, Iran, Islamic Republic of
Yahya Zamani  -  Research Institute of Petroleum Industry of the National Iranian Oil Company, Gas Research Division, P.O. Box 18745-4163, Tehran, Iran, Islamic Republic of
Received: 21 May 2017; Revised: 29 Aug 2017; Accepted: 7 Sep 2017; Published: 2 Apr 2018; Available online: 22 Jan 2018.
Open Access Copyright (c) 2018 Bulletin of Chemical Reaction Engineering & Catalysis
License URL: http://creativecommons.org/licenses/by-sa/4.0

Citation Format:
Cover Image

The MgO-supported Fe-Co-Mn catalysts, prepared using co-precipitation procedure, were tested for production of light olefins via CO hydrogenation reaction. The effect of a range of drying conditions including drying temperature and drying time on the structure and catalytic performance of Fe-Co-Mn/MgO catalyst for Fischer-Tropsch synthesis was investigated in a fixed bed micro-reactor under the same operational conditions of T = 350 °C, P = 1 bar, H2/CO = 2/1, and GHSV = 4500 h-1. It was found that the catalyst dried at 120 °C for 16 h has shown the best catalytic performance for CO hydrogenation. Furthermore, the effect of drying conditions on different surface reaction rates was also investigated and it was found that the precursors drying conditions influenced the rates of different surface reactions. Characterization of catalyst precursors and calcined samples (fresh and used) was carried out using powder X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), Brunauer-Emmett-Teller (BET) measurements, Temperature Programmed Reduction (TPR), Thermal Gravimetric Analysis (TGA), and Differential Scanning Calorimetry (DSC). Characterization results showed that different investigated variables (drying conditions) influenced the structure, morphology and catalytic performance of the ternary catalysts. Copyright © 2018 BCREC Group. All rights reserved

Received: 21st May 2017; Revised: 29th August 2017; Accepted: 7th September 2017; Available online: 22nd January 2018; Published regularly: 2nd April 2018

How to Cite: Abdouss, M., Arsalanfar, M., Mirzaei, N., Zamani, Y. (2018). Effect of Drying Conditions on the Catalytic Performance, Structure, and Reaction Rates over the Fe-Co-Mn/MgO Catalyst for Production of Light Olefins. Bulletin of Chemical Reaction Engineering & Catalysis, 13 (1): 97-112 (doi:10.9767/bcrec.13.1.1222.97-112)


Keywords: Fe-Co-Mn catalyst; Drying conditions; CO hydrogenation; Characterization; Surface reactions rate

Article Metrics:

  1. Shimura, K., Miyazawa, T., Hanaoka, T., Hirata, S. (2015). Fischer–Tropsch Synthesis over Alumina Supported Bimetallic Co–Ni Catalyst: Effect of Impregnation Sequence and Solution. J. Mol. Catal. A: Chem., 407: 15-24.
  2. Todica, B., Nowickic, L., Nikacevicb, N., Bukura, D.B. (2016). Fischer–Tropsch Synthesis Product Selectivity over an in Dustrialiron-Based Catalyst: Effect of Process Conditions, Catal. Today, 261: 28-39.
  3. Bhatelia, T., Li, C.E., Sun, Y., Hazewinkel, P., Burke, N., Sage, V. (2014). Chain Length Dependent Olefin Re-Adsorption Model for Fischer-Tropsch Synthesis over Co-Al2O3 Catalyst. Fuel Proc. Tech., 125: 277-289.
  4. Zhang, J.P., Sun, Y., Woo, M.W., Zhang, L., Xu, K.Z., (2016). Preparation of Steam Activated Carbon from Black Liquor by Flue Gas Precipitation and Its Performance in Hydrogen Sulfide Removal: Experimental and Simulation Works. J. Taiwan Inst. Chem. E., 59: 395-404.
  5. Gill, S.S., Tsolakis, A., Dearn, K.D., Rodriguez-Fernandez, J. (2011). Combustion Characteristics and Emissions of Fischer-Tropsch Diesel Fuels in IC Engines. Prog. Energ. Combust., 37: 503-523.
  6. Jahangiri, H., Bennett, J., Mahjoubi, P., Wilson, K., Gu, S. (2014). A Review of Advanced Catalyst Development for Fischeretropsch Synthesis of Hydrocarbons from Biomass Derived Syn-gas. Catal. Sci. Tech., 4: 2210-2229.
  7. Sun, Y., Wei, J., Zhang, J.P., Yang, G. (2016). Optimization using Response Surface Methodology and Kinetic Study of Fischer-Tropsch Synthesis using SiO2 Supported Bimetallic Co-Ni Catalyst. J. Nat. Gas Sci. Eng., 28: 173-183.
  8. Zhang, Y., Xiong, H., Liew, K., Li, J., (2005). Effect of Magnesia on Alumina-Supported Cobalt Fischer–Tropsch Synthesis Catalysts. J. Mol. Catal. A: Chem., 237: 172-181.
  9. Luque, R., de la Osa, A.R., Campelo, J.M., Romero, A.A., Valverde, J.L, Sanchez, P. (2012). Design and Development of Catalysts for Biomass-To-Liquid-Fischer-Tropsch (BTL-FT) Processes for Biofuels Production. Energ. Environ. Sci., 5: 5186-5202.
  10. de Beer, M., Kunene, A., Nabahot, D., Claeys, M., Steen, E.van. (2014). Technical and Economic Aspects of Promotion of Cobalt-Based Fischer-Tropsch Catalysts by Noble Metals-A Review. J. S. Afr. I Min. Metall., 114: 157-165.
  11. Zhao, Y-H., Song, Y-H., Hao, Q-Q., Wang, Y-J., Wang, W., Liu, Z-T., Zhang, D., Liu, Z-W., Zhang, Q-J., Lu, J., (2015). Cobalt-Supported Carbon and Alumina Co-Pillared Montmorillonite for Fischer-Tropsch Synthesis. Fuel. Proc. Tech., 138: 116-124.
  12. Yang, J., Ma, W.P., Chen, D., Holmen, A., Davis, B.H. (2014). Fischer-Tropsch Synthesis: A Review of the Effect of CO Conversion on Methane Selectivity. Appl. Catal. A Gen., 470: 250-260.
  13. Khodakov, A.Y., Chu, W., Fongarland, P. (2007). Advances in the Development of Novel Cobalt Fischer–Tropsch Catalysts for Synthesis of Long-Chain Hydrocarbons and Clean Fuels. Chem. Rev., 107(5): 1692-1744.
  14. Trépanier, M., Tavasoli, A., Dalai, A.K., Abatzoglou, N. (2009). Co, Ru and K Loadings Effects on the Activity and Selectivity of Carbon Nanotubes Supported Cobalt Catalyst in Fischer Tropsch Synthesis. Appl. Catal. A: Gen., 353(2): 193-202.
  15. Jothimurugesan, K., Gangwal, S.K. (1998). Regeneration of Zinc Titanate H2S Sorbents, Ind. Eng. Chem. Res., 37: 1929-1933.
  16. Van der Laan, G.P., Beenackers, A.A.C.M. (1999). Kinetics and Selectivity of the Fischer-Tropsch Synthesis: A Literature Review. Catal. Rev. Sci. Eng., 41: 255-318.
  17. González-Cortés, S.L., Rodulfo-Baechler, S.M.A., Oliveros, A., Orozco, J., Fontal, B., Mora, A.J., Delgado, G. (2002). Synthesis of Light Alkenes on Manganese Promoted Iron and Iron-Cobalt Fischer-Tropsch Catalysts. React. Kinet. Catal. Lett., 75: 3-12.
  18. Keyser, M.J., Everson, R.C., Espinoza, R.L. (1998). Fischer–Tropsch Studies with Cobalt–Manganese Oxide Catalysts: Synthesis Performance in a Fixed Bed Reactor. Appl. Catal. A: Gen., 171: 99-107.
  19. Cabet, C., Roger, A.C., Kiennemann, A., Lakamp, S., Pourroy, G. (1998). Synthesis of New Fe–Co Based Metal/Oxide Composite Materials: Application to the Fischer–Tropsch Synthesis. J. Catal., 173: 64-73.
  20. Tihay F, Roger A. C, Kiennemann A, Pourroy, G, (2000) Fe-Co based metal/spinel to produce light olefins from syngas, Catal. Today 58: 263-269.
  21. Barrault, J. (1982). Selective Hydrogenation of Carbon Monoxide on Supported Iron or Cobalt Catalysts. Effects of Manganese Oxide and (Or) Chlorine. Stud. Surf. Sci. Catal., 11: 225-231.
  22. Barrault, J., Forquy, C., Menezo, J., Maurel, R. (1980). Selective of CO to Light Olefins with Alumina-Supported Iron Catalysts. React. Kinet. Catal. Lett., 15: 153-158.
  23. Barrault, J., Forquy, C., Perrichon, V. (1983). Effects of Manganese Oxide and Sulphate on Olefin Selectivity of Iron Supported Catalysts in The Fischer-Tropsch Reaction. Appl. Catal. A: Gen., 5: 119-125.
  24. Arsalanfar, M., Mirzaei, A.A., Bozorgzadeh, H.R. (2012). Effect of Calcination Conditions on the Structure and Catalytic Performance of MgO Supported Fe-Co-Mn Catalyst for CO Hydrogenation. J. Nat. Gas. Sci. Eng., 6: 1-13.
  25. Arsalanfar, M., Mirzaei, A.A., Bozorgzadeh, H.R. (2013). Effect of Preparation Method on Catalytic Performance, Structure and Surface Reaction Rates of MgO Supported Fe-Co-Mn Catalyst for CO Hydrogenation. J. Ind. Eng. Chem., 19: 478-487.
  26. Arsalanfar, M., Mirzaei, A.A., Bozorgzadeh, H.R., Atashi, H. (2012). Effect of Process Conditions on the Surface Reaction Rates and Catalytic Performance of MgO Supported Fe-Co-Mn Catalyst for CO Hydrogenation. J. Ind. Eng. Chem., 18: 2092-2102
  27. Arsalanfar, M., Mirzaei, A.A., Bozorgzadeh, H.R., Samimi, A., Ghobadi, R. (2014). Effect of Support and Promoter on the Catalytic Performance and Structural Properties of the Fe-Co-Mn Catalysts for Fischer–Tropsch Synthesis. J. Ind. Eng. Chem., 20: 1313-1323.
  28. An, X., Wu, B., Hou, W., Wan, H., Tao, Z., Li, T., Zhang, Z., Xiang, H., Li, Y., Xu, B., Yi, F. (2007). The Negative Effect of Residual Sodium on Iron-Based Catalyst for Fischer–Tropsch Synthesis. J. Mol. Catal. A: Chem., 263: 266-272.
  29. Zennaro, R., Tagliabue, M., Bartholomew, C.H. (2000). Kinetics of Fischer–Tropsch Synthesis on Titania-Supported Cobalt. Catalysis Today, 58: 309-319.
  30. Levenspiel, O. (1999). Chemical Reaction Engineering, 3th ed., Wiley, New York, Chapter 24,
  31. Xue, L., Zhang, C.B., He, H., Teraoka, Y. (2007). Catalytic Decomposition of N2O over CeO2 Promoted Co3O4 Spinel Catalyst. Appl. Catal. B: Environmental, 75: 167-174.
  32. Lin, H.Y., Chen, Y.W. (2004). The Mechanism of Reduction of Cobalt by Hydrogen. Mater. Chem. Phys., 85: 171-175.
  33. Jozwiak, W.K., Kaczmarek, E., Maniecki, T.P., Ignaczak, W., Maniukiewicz, W. (2007). Reduction Behavior of Iron Oxides in Hydrogen and Carbon Monoxide Atmospheres. Appl. Catal. A: Gen., 326: 17-27.
  34. Lögdberg, S., Tristantini, D., Borg, Ø., Ilver, L., Gevert, B., Järås, S., Blekkan, E.A., Holmen, A. (2009). Hydrocarbon Production via Fischer-Tropsch Synthesis from H2-poor Syngas over Different Fe-Co/γ-Al2O3 Bimetallic Catalysts. Appl. Catal. B: Env,, 89: 167-182.
  35. Li, T., Yang, Y., Tao, Z., Zhang, C., Xiang, H., Li, Y. (2009). Study on an Iron-Manganese Fischer-Tropsch Synthesis Catalyst Prepared from Ferrous Sulfate. Fuel. Proc. Tech., 90: 1247-1251.
  36. Li, T., Yang, Y., Zhang, C., Tao, Z., Wan, H., An, X., Xiang, H., Li, Y. (2007). Effect of Manganese Incorporation Manner on an Iron-Based Catalyst for Fischer-Tropsch Synthesis. J. Nat. Gas Chem,, 16: 244-251.
  37. Zhang, C-H., Yang, Y., Teng, B-T., Li, T-Z., Zheng, H-Y., Xiang, H-W., Li, Y-W. (2006). Study of an Iron-Manganese Fischer–Tropsch Synthesis Catalyst Promoted with Copper. J. Catal,, 237: 405-415
  38. Li, T., Yang, Y., Zhang, C., An, X., Wan, H., Tao, Z., Xiang, H., Li, Y., Yi, F., Xu, B. (2007). Effect of Manganese on an Iron-Based Fischer–Tropsch Synthesis Catalyst Prepared from Ferrous Sulfate. Fuel, 86: 921-928

No citation recorded.