skip to main content

Reaction Kinetics of Levulinic Acid Synthesis from Glucose Using Bronsted Acid Catalyst

1LPP Agro Nusantara, Yogyakarta, Indonesia

2Department of Chemical Engineering, Faculty of Engineering, Gadjah Mada University, Yogyakarta, Indonesia

3Master Program in System Engineering, Gadjah Mada University, Yogyakarta, Indonesia

Received: 30 Aug 2021; Revised: 22 Sep 2021; Accepted: 23 Sep 2021; Published: 20 Dec 2021; Available online: 25 Sep 2021.
Open Access Copyright (c) 2021 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image

Glucose is one of the primary derivative products from lignocellulosic biomass, which is abundantly available. Glucose has excellent potential to be converted into valuable compounds such as ethanol, sorbitol, gluconic acid, and levulinic acid (LA). Levulinic acid is an exceptionally promising green platform chemical. It comprises two functional groups, ketone and carboxylate, acting as highly reactive electrophiles for a nucleophilic attack. Therefore, it has extensive applications, including fuel additives, raw materials for the pharmaceutical industry, and cosmetics. This study reports the reaction kinetics of LA synthesis from glucose catalyzed by hydrochloric acid (HCl), a Bronsted acid, that was carried out under a wide range of operating conditions; i.e. the temperature of 140–180 °C, catalyst concentration of 0.5–1.5 M, and initial glucose concentration of 0.1–0.5 M. The highest LA yield of 48.34 % was able to be obtained from an initial glucose concentration of 0.1 M and by using 1 M HCl at 180 °C. The experimental results show that the Bronsted acid-catalyzed reaction pathway consists of glucose decomposition to levoglucosan (LG), conversion of LG to 5-hydroxymethylfurfural (HMF), and rehydration of HMF to LA. The experimental data yields a good fitting by assuming a first-order reaction model. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (


Fulltext View|Download
Keywords: Bronsted Acid; Glucose; Kinetics; Levoglucosan; Levulinic Acid
Funding: Ministry of Education and Culture, Republic of Indonesia under contract PMDSU (Master to Doctorate Education for Superior Scholar)

Article Metrics:

Article Info
Section: Original Research Articles
Language : EN
  1. Daorattanachai, P., Namuangruk, S., Viriya-empikul, N., Laosiripojana, N. (2012). 5-Hydroxymethylfurfural Production from Sugars and Cellulose in Acid- and Base-catalyzed Conditions Under Hot Compressed Water. Journal of Industrial and Engineering Chemistry, 18, 1893–1901. DOI: 10.1016/j.jiec.2012.04.019
  2. Kupiainen, L., Ahola, J., Tanskanen, J. (2011). Kinetics of Glucose Decomposition in Formic Acid. Chemical Engineering Research and Design, 89, 2706–2713. DOI: 10.1016/j.cherd.2011.06.005
  3. Corma Canos, A., Iborra, S., Velty, A. (2007). Chemical Routes for the Transformation of Biomass into Chemicals. Chemical Reviews, 107, 2411–2502. DOI: 10.1021/cr050989d
  4. Liu, C., Lu, X., Yu, Z., Xiong, J., Bai, H., Zhang, R. (2020). Production of Levulinic Acid from Cellulose and Cellulosic Biomass in Different Catalytic Systems. Catalysts, 10, 1–22. DOI: 10.3390/catal10091006
  5. Yan, K., Jarvis, C., Gu, J., Yan, Y. (2015). Production and Catalytic Transformation of Levulinic Acid: A Platform for Speciality Chemicals and Fuels. Renewable and Sustainable Energy Reviews, 51, 986–997. DOI: 10.1016/j.rser.2015.07.021
  6. Galletti, A.M.R., Antonetti, C., De Luise, V., Licursi, D., o Di Nasso, N.N. (2012). Levulinic Acid Production from Waste Biomass. Bioresources, 7, 1824–1835. DOI: 10.15376/biores.7.2.1824-1835
  7. Boonyakarn, T., Wataniyakul, P., Boonnoun, P., Quitain, A.T., Kida, T., Sasaki, M., Laosiripojana, N., Jongsomit, B., Shotipruk, A. (2019). Enhanced Levulinic Acid Production from Cellulose by Combined Brønsted Hydrothermal Carbon and Lewis Acid Catalysts. Industrial and Engineering Chemistry Research, 58, 2697–2703. DOI: 10.1021/acs.iecr.8b05332
  8. Girisuta, B., Janssen, L.P.B.M., Heeres, H.J. (2006). A Kinetic Study on the Conversion of Glucose to Levulinic Acid. Chemical Engineering Research and Design, 84, 339–349. DOI: 10.1205/cherd05038
  9. Bozell J.J., Petersen, G.R. (2010). Technology Development for The Production of Biobased Products from Biorefinery Carbohydrates—the US Department of Energy's 'Top 10' Revisited. Green Chemistry, 12, 539–555. DOI: 10.1039/b922014c
  10. Mukherjee, A., Dumont, M.J., Raghavan, V. (2015). Sustainable Production of Hydroxymethylfurfural and Levulinic Acid : Challenges and Opportunities. Biomass Bioenergy, 72, 143–183. DOI: 10.1016/j.biombioe.2014.11.007
  11. Chang, C., Ma, X., Cen, P. (2006). Kinetics of Levulinic Acid Formation from Glucose Decomposition at High Temperature. Chinese Journal of Chemical Engineering, 14, 708-712. DOI: 10.1016/S1004-9541(06)60139-0
  12. Maiti, S., Gallastegui, G., Suresh, G., Pachapur, V.L., Brar, S.K., Le Bihan, Y., Drogui, P., Buelna, G., Verma, M., Galvez-Cloutier, R. (2018). Microwave-assisted One-Pot Conversion of Agro-Industrial Wastes into Levulinic Acid: An Alternate Approach. Bioresource Technology, 265, 471–479. DOI: 10.1016/j.biortech.2018.06.012
  13. Bozell, J.J., Moens, L., Elliott, D.C., Wang, Y., Neuenscwander, G.G., Fitzpatrick, S.W., Bilski, R.J., Jarnefeld, J.L. (2000). Production of Levulinic Acid and Use as A Platform Chemical for Derived Products. Resources, Conservation and Recycling, 28, 227–239. DOI: 10.1016/S0921-3449(99)00047-6
  14. Guo, Y., Clark, J.H. (2007). The Synthesis of Diphenolic Acid Using The Periodic Mesoporous H3 PW12O40-silica Composite Catalysed Reaction of Levulinic Acid. Green Chemistry, 9, 839–841. DOI: 10.1039/b702739g
  15. Ha, H., Lee, S., Ha, Y., Park, J. (1994). An International Journal for Rapid Communication of Synthetic Organic Chemistry Selective Bromination of Ketones. A Convenient Synthesis of 5-Aminolevulinic Acid. Synthetic Communications, 24, 2557–2562. DOI: 10.1080/00397919408010567
  16. Badgujar, K.C., Wilson, L.D., Bhanage, B.M. (2019). Recent Advances for Sustainable Production of Levulinic Acid in Ionic Liquids from Biomass: Current Scenario, Opportunities and Challenges. Renewable and Sustainable Energy Reviews, 102, 266–284. DOI: 10.1016/j.rser.2018.12.007
  17. Grand View Research (2014). Citing Internet sources URL
  18. Kang, S., Fu, J., Zhang, G. (2017). From Lignocellulosic Biomass to Levulinic Acid: A Review on Acid-catalyzed Hydrolysis. Renewable and Sustainable Energy Reviews, 94, 340–362. DOI: 10.1016/j.rser.2018.06.016
  19. Weingarten, R., Cho, J., Xing, R., Jr, W.C.C., Huber, J.W. (2012). Kinetics and Reaction Engineering of Levulinic Acid Production from Aqueous Glucose Solutions. ChemSusChem, 5, 1280-1290. DOI: 10.1002/cssc.201100717
  20. Signoretto, M., Taghavi, S., Ghedini, E., Menegazo, F. (2019). Catalytic Production of Levulinic Acid (LA) from Actual Biomass. Molecules, 24, 1–20. DOI: 10.3390/molecules24152760
  21. Feng, J., Tong, L., Xu, Y., Jiang, J., Hse, C., Yang, Z. (2020). Synchronous Conversion of Lignocellulosic Polysaccharides to Levulinic Acid with Synergic Bifunctional Catalysts in a Biphasic Cosolvent System. Industrial Crops and Products, 145, 1–9. DOI: 10.1016/j.indcrop.2019.112084
  22. Deng, W., Zhang, Q., Wang, Y. (2015). Catalytic Transformations of Cellulose and Its Derived Carbohydrates into 5-hydroxymethylfurfural, Levulinic Acid, and Lactic Acid. Science China Chemistry, 58, 29–46. DOI: 10.1007/s11426-014-5283-8
  23. Tarabanko, V.E., Chernyak, M.Y., Aralova, S.V., Kuznetsov, B.N. (2002). Kinetics of Levulinic Acid Formation from Carbohydrates at Moderate Temperatures. Reaction Kinetics and Catalysis Letters, 75, 117–126. DOI: 10.1023/A:1014857703817
  24. Saeman, S. (1945). Hydrolysis of Cellulose and Decomposition of Sugars in Dilute Acid at High Temperature. Industrial and Engineering Chemistry, 37, 43–52. DOI: 10.1021/ie50421a009
  25. Cha, J.Y., Hanna, M.A. (2002). Levulinic Acid Production Based on Extrusion and Pressurized Batch Reaction. Industrial Crops and Products, 16, 109–118. DOI: 10.1016/S0926-6690(02)00033-X
  26. Zhou, C., Zhao, J., Elgasim, A., Yagoub, A., Ma, H. (2017). Conversion of Glucose into 5-hydroxymethylfurfural in Different Solvents and Catalysts: Reaction Kinetics and Mechanism. Egyptian Journal of Petroleum, 26, 477–487. DOI: 10.1016/j.ejpe.2016.07.005
  27. Jeong, G., Kim, S. (2020). Bioresource Technology Valorization of Thermochemical Conversion of Lipid-extracted Microalgae to Levulinic Acid. Bioresource Technology, 313, 1–7. DOI: 10.1016/j.biortech.2020.123684
  28. Ma, Y., Wang, L., Li, H., Wang, T., Zhang, R. (2018). Selective Dehydration of Glucose into 5-Hydroxymethylfurfural by Ionic Liquid-ZrOCl2 in Isopropanol. Catalysts, 8, 30–34. DOI: 10.3390/catal8100467
  29. Toif, M.E., Hidayat, M., Rochmadi, R., Budiman, A. (2020). Glucose to Levulinic Acid, a Versatile Building Block Chemical. AIP Conference Proceedings, 2296, 1–6. DOI: 10.1063/5.0030451
  30. Shen, J., Wyman, C.E. (2011). Hydrochloric Acid-Catalyzed Levulinic Acid Formation from Cellulose: Data and Kinetic Model to Maximize Yields. American Institute of Chemical Engineers, 58, 236–246. DOI: 10.1002/aic.12556
  31. Chang, C., Cen, P., Ma, X.. (2007) Levulinic Acid Production from Wheat Straw. Bioresource Technology, 98, 1448–1453. DOI: 10.1016/j.biortech.2006.03.031
  32. Yan, L., Yang, N., Pang, H., Liao, B. (2008). Production of Levulinic Acid from Bagasse and Paddy Straw by Liquefaction in the Presence of Hydrochloride Acid. Clean, 36, 158–163. DOI: 10.1002/clen.200700100
  33. Anggorowati, H., Jamilatun, S., Cahyono, R.B., Budiman, A. Effect of Hydrochloric Acid Concentration on the Conversion of Sugarcane Bagasse to Levulinic Acid. IOP Conference Series: Materials Science Engineering, 299, 1–6. DOI: 10.1088/1757-899X/299/1/012092
  34. Szabolcs, A., Molnar, M., Dibo, G., Mika, L.T. (2013). Microwave-assisted Conversion of Carbohydrates to Levulinic Acid: An Essential Step in Biomass Conversion. Green Chemistry, 15, 439–445. DOI: 10.1039/c2gc36682g
  35. Fachri, B.A., Abdilla, R.M., van de Bovenkamp, H.H., Rasrendra, C.B., Heeres, H.J. (2015). Experimental and Kinetic Modeling Studies on the Sulfuric Acid Catalyzed Conversion of D-Fructose to 5-Hydroxymethylfurfural and Levulinic Acid in Water. Sustainable Chemistry and Engineering, 3, 3024–3034. DOI: 10.1021/acssuschemeng.5b00023
  36. Jiang Y., Yang, L., Bohn, C.M., Li, G., Han, D., Mosier, N.S., Miller, J.T., Kenttamaa, H.I., Abu-Omar, M.M. (2015). Speciation and Kinetic Study of Iron Promoted Sugar Conversion to 5-Hydroxymethylfurfural (HMF) and Levulinic Acid (LA). Organic Chemistry Frontiers, 2, 1388–1396. DOI: 10.1039/C5QO00194C
  37. Kuster, B.F.M., Temmink, H.M.G. (1977). The Influence of pH and Weak Acid Anions on The Dehydration of D-Fructose. Carbohydrate Research, 54, 185–191. DOI: 10.1016/S0008-6215(00)84808-9
  38. Takahashi, K., Satoh, H., Satoh, T., Kakuchi, T., Miura, M., Sasaki, A., Sasaki, M., Kaga, H. (2009). Formation Kinetics of Levoglucosan from Glucose in High Temperature Water. Chemical Engineering Journal, 153, 170–174. DOI: 10.1016/j.cej.2009.06.027
  39. Weingarten, R., Rodriguez-beuerman, A., Cao, F., Luterbacher, J.S., Alonso, M., Dumesic, J.A., Huber, G.W. (2014). Selective Conversion of Cellulose to Hydroxymethylfurfural in Polar Aprotic Solvents. ChemCatChem, 6, 2229–2234. DOI: 10.1002/cctc.201402299
  40. Herbst A., Janiak, C. (2016). Selective Glucose Conversion to 5-Hydroxymethylfurfural (5-HMF) instead of Levulinic Acid with MIL-101CrMOF-derivatives. New Journal of Chemistry, 40, 7958–7967. DOI: 10.1039/C6NJ01399F
  41. Xiang, Q., Lee, Y.Y., Torget, R.W. (2004). Kinetics of Glucose Decomposition During Dilute-Acid Hydrolysis of Lignocellulosic Biomass. Applied Biochemistry and Biotechnology, 113, 1127–1138. DOI: 10.1007/978-1-59259-837-3_91
  42. Carlson, L.J. (1962). Process for The Manufacture of Levulinic Acid. US Patent, 3065263
  43. Ramli, N.A.S., Amin, N.A.S. (2016). Kinetic Study of Glucose Conversion to Levulinic Acid over Fe/HY Zeolite Catalyst. Chemical Engineering Journal, 283, 150–159. DOI: 10.1016/j.cej.2015.07.044

Last update:

No citation recorded.

Last update:

No citation recorded.