skip to main content

Layered Double Hydroxide Catalysts Preparation, Characterization and Applications for Process Development: An Environmentally Green Approach

1Department of Physics, Chemistry and Material Science, University of Namibia, Mandumedumefayo, Post Bag13301, Windhoek, Namibia

2Department of Chemistry, University of Zululand, Private Bag X1001, KwaDlangezwa 3886, South Africa

Received: 29 Aug 2021; Revised: 25 Nov 2021; Accepted: 26 Nov 2021; Available online: 23 Dec 2021; Published: 30 Mar 2022.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2021 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image

The adage of new generation of fine chemicals process is the best process applied in the absence of conventional methods. However, many methods use different reaction parameters, such as basic and acidic catalysts, for example oxidation, reduction, bromination, water splitting, cyanohydrin, ethoxylation, syngas, aldol condensation, Michael addition, asymmetric ring opening of epoxides, epoxidation, Wittig and Heck reaction, asymmetric ester epoxidation of fatty acids, combustion of methane, NOx reduction, biodiesel synthesis, propylene oxide polymerization. Layered Double Hydroxides (LDHs) have received considerable attention due their potential applications in flame retardant and has excellent medicinal property for reducing acidity. These catalysts are characterized using analytical techniques, such as: X-ray diffraction (XRD), Fourier-transform infrared (FT-IR), Raman spectroscopy, Thermogravimetric-Differential Thermal Analyzer (TG-DTA), Scanning electron microscope (SEM), Transmission electron microscopes (TEM), Brunauer-Emmett-Teller (BET) surface area, N2 Adsorption-desorption, Temperature programmed reduction (TPR), X-ray photoelectrons spectroscopy (XPS), which gives its overall picture of its structure, porosity, morphology, thermal stability, reusability, and activity of catalysts. LDHs catalysts have proven to be economic and environmentally friendly. The above discussed applications make these catalysts unique from Green Chemistry point of view since they are reusable, and eco-friendly catalysts. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (


Fulltext View|Download
Keywords: Layered Double hydroxides; synthesis; applications; characterization
Funding: National Research Foundation (NRF, South Arica) under contract Incentive Fund Grant (Grant No: 103691) and Research Developmental Grant for Rated Researchers (112145)

Article Metrics:

  1. Paulo, L., Benıcio, F., Silva, R.A., Lopes, J.A., Eulalio, D., dos Santos, R.M.M., de Aquino, L.A., Vergutz, L., Novais, R.F., da Costa, L.M., Frederico G. P., Jairo. T. (2015). Layered Double Hydroxides: Nanomaterials for Applications in Agriculture. Rev. Bras. Ciênc. Solo, 39, 1–13, DOI: 10.1590/01000683rbcs20150817
  2. Taylor, H.F.W. (1973). Crystal Structures of Some Double Hydroxide Minerals. Mineral. Mag., 39, 377–389. DOI: 10.1180/minmag.1973.039.304.01
  3. Ren, L., He, J., Evans, D.G., Duan, X., Ma, R. (2001). Some Factors Affecting the Immobilization of Penicillin G Acylase on Calcined Layered Double Hydroxides. J. Mol. Catal. B: Enzymatic, 16, 65–71. DOI: 10.1016/S1381-1177(01)00044-3
  4. Albertazzi, S., Busca, G., Finocchio, E., Glckler, R., Vaccari, A. (2004). New Pd/Pt on Mg/Al Basic Mixed Oxides for the Hydrogenation and Hydrogenolysis of Naphthalene. J. Catal., 223, 372–381. DOI: 10.1016/j.jcat.2004.01.024
  5. Fan, G., Li, F., David, G.E, Xue, D. (2014). Catalytic applications of layered double hydroxides: recent advances and perspectives. Chem. Soc. Rev., 43, 7040-7066. DOI: 10.1039/C4CS00160E
  6. Kirm, I., Medina, F., Rodrıguez, X., Cesteros, Y., Salagre, P., Sueiras, J. (2004). Epoxidation of Styrene with Hydrogen Peroxide Using Hydrotalcites as Heterogeneous Catalysts. Appl. Catal. A, 272, 175–185. DOI: 10.1016/j.apcata.2004.05.039
  7. Costantino, U., Curini, M., Montanari, F., Nocchetti, M., Rosati, O. (2003). Hydrotalcitelike Compounds as Catalysts in Liquid Phase Organic Synthesis: I. Knoevenagel Condensation Promoted by Ni0.73Al0.27(OH)2](CO3)0.135. J. Mol. Catal. A: Chem., 195, 245–252. DOI: 10.1016/S1381-1169(02)00580-0
  8. Choudary, B.M., Madhi, S., Chowdari, N.S., Kantam, M.L., Sreedhar, B. (2002). Layered Double Hydroxide Supported Nanopalladium Catalyst for Heck-, Suzuki-, Sonogashira-, and Stille-Type Coupling Reactions of Chloroarenes. J. Am. Chem. Soc., 124, 14127–14136. DOI: 10.1021/ja026975w
  9. Rives, V., Prieto, O., Dubey, A., Kannan, S. (2003). Synergistic Effect in the Hydroxylation of Phenol over CoNiAl Ternary Hydrotalcites. J. Catal., 220, 161–171. DOI: 10.1016/S0021-9517(03)00245-8
  10. Bish, D.L. (1980). Anion Exchange in Takovite: Applications to Other Hydroxide Minerals. Bull. Mineral, 103, 170–175. DOI: 10.3406/bulmi.1980.7392
  11. Comelli, N.A., Ruiz M.L., Aparicio, M.S.L., Merino N.A., Cecilia, J.A., Rodríguez Castellón, E., Lick, I.D., Ponzi M.I. (2018). Influence of the synthetic conditions on the composition, morphology of CuMgAl hydrotalcites and their use as catalytic precursor in Diesel soot combustion reactions. Applied Clay Science, 157, 148-157. DOI: 10.1016/j.clay.2018.02.039
  12. Corma, A., Palomares, A.E., Rey, F., Marquez, F. (1997). Simultaneous Catalytic Removal of SOx and NOx with Hydrotalcite Derived Mixed Oxides Containing Copper, and Their Possibilities to be used in FCC Units. J. Catal., 170, 140–149. DOI: 10.1006/jcat.1997.1750
  13. Palomares, A.E., Lopez-Nieto, J.M., Lazaro, F.J., Lopez, A., Corma, A. (1999). Reactivity in the Removal of SO2 and NOx on Co/Mg/Al Mixed Oxides Derived from Hydrotalcites. Appl. Catal. B Environ., 20, 257–266. DOI: 10.1016/S0926-3373(98)00121-0
  14. Huang, X., Yang, X., Li, G., I. Ezeh, C., Sun, C., Snape, C. (2019). Hybrid Two-step Preparation of Nanosized MgAl Layered Double Hydroxides for CO2 Adsorption. Infotech, Chapter, 10, 1-21. DOI: 10.5772/infotechopen.8660
  15. Aminu, K., Nooraini, A., Mohd, H., Sharida, F.H., Samer, A. (2014). Toxicity and Metabolism of Layered Double Hydroxide Intercalated with Levodopa in a Parkinson’s Disease Model. Int. J. Mol. Sci., 15, 5916–5927. DOI: 10.3390/ijms15045916
  16. Kim, H.J., Lee, G.J., Choi, A.J., Kim, T.H., Kim, T.I., Oh, J.M. (2018). Layered double hydroxide nanomaterials encapsulating angelica gigas nakai extract for potential anticancer nanomedicine. Front. Pharmacol., 9, 723. DOI: 10.3389/fphar.2018.00723
  17. Qin-Zheng, Y., Ying-Yue, C., Hua-Zhang, Z. (2013). Preparation and antibacterial activity of lysozyme and layered double hydroxide nanocomposites. Water Res. 1; 47(17), 6712-8. DOI: 10.1016/j.watres.2013.09.002
  18. Lagnamayee, M., Dhananjaya, P., Kulamani, P., Javaid, Z.S. (2017). Enhanced Photocatalytic Activity of a Molybdate-Intercalated Iron-Based Layered Double Hydroxide. Eur. J. Inorg. Chem., 2017, 723–733. DOI: 10.1002/ejic.201601191
  19. Kentaro, T., Hideo, T., Kentaro, O., Takashi, S., Tetsuya, S., Tsunehiro, T. (2014). Photoactivation of Molecular Oxygen by an Iron (III) Porphyrin with a Magnesium Aluminum Layered Double Hydroxide for the Aerobic Epoxidation of Cyclohexene. ChemCatChem, 6, 2276–2281. DOI: 10.1002/cctc.201402131
  20. Shirley, N., Kelly, A.D.F.C., Geani, M.U., Matilte, H., Vanessa, P., Claude, F., Fernando, W. (2014). Anionic Iron(III) Porphyrin Immobilized on/into Exfoliated Macroporous Layered Double Hydroxides as Catalyst for Oxidation Reactions. J. Braz. Chem. Soc., 25 (12), DOI: 10.5935/0103-5053.20140241
  21. Xianggui, K., Jingwen, Z., Jingbin, H., Danyao, Z., Min, W., Xue, D. (2011). Fabrication of Naphthol Green B/Layered Double Hydroxide Nanosheets Ultrathin Film and Its Application in Electrocatalysis. Electrochim. Acta., 56, 1123–1129. DOI: 10.1016/j.electacta.2010.10.081
  22. Hessamaddin, S., Alireza, K., Shahin, G., Mir R.M., Yasin, O. (2021). A review of status and prospects Layer double hydroxides (LDHs)- based electrochemical and optical sensing assessments for quantification and identification of heavy metals in water and environment samples. Trends in Environmental Analytical Chemistry, 31, e00139. DOI: 10.1016/j.teac.2021.e00139
  23. Kiyoharu, T., Kohei, I., Takashi, K., Akira, M., Mikio, H. (2015). Development of Alkaline Fuel Cells Using Hydroxide-Ion Conductive Layered Double Hydroxides. ECS Transactions, 69, 17, 385-390. DOI: 10.1149/06917.0385ecst
  24. Yu, F., Zhou, H., Huang, Y., Jingying, S., Fan, Q., Jiming, B., William, A.G., Shuo, C., Zhifeng, R. (2018). High-performance bifunctional porous non-noble metal phosphide catalyst for overall water splitting. Nature Communications, 9(1), 2551. DOI: 10.1038/s414167-018-04746-z
  25. Xiao, X., Huang, D., Fu, Y. Ming, W., Xingxing, J., Xiaowei, L., Lin, G., Shuanghuang, L., Mengkui, W., Chuan, Z., Yan, S. (2018). Engineering NiS/Ni2P heterostrucures for efficient electrocatalytic water splitting. ACS Applied Materials & Interfaces, 10 (5), 4689–4696. DOI: 10.1021/acsami.7b16430
  26. Song, Y., Ji, K., Duan, H., Shao, M. (2021). Hydrogen production coupled with water and organic oxidation based on layered double hydroxides. Exploration, 1, 20210050., 1-12. DOI: 10.1002/EXP.20210050
  27. Shalini, K., Nur Hawa, N.A., Yusran, S. (2020). Advances in Layered Double Hydroxide/Carbon Nanocomposites Containing Ni2+ and Co2+/3+ for Supercapacitors. Frontiers in Materials, 7, 147, 1-22. DOI: 10.3389/fmats.2020.00147
  28. Zhang, J., Wang, X., Zhan, S., Li, H., Ma, C., Qiu, Z. (2021). Synthesis of Mg/Al-LDH nanoflakes decorated magnetic mesoporous MCM-41 and its application in humic acid adsorption. Microchemical Journal, 162, 105839. DOI: 10.1016/j.microc.2020.105839
  29. Fan, X., Cao, Q., Meng, F., Song, B., Bai, Z., Zhao, Y., Chen, D., Zhou, Y., Song, M. (2021). A Fenton-like system of biochar loading FeAl layered double hydroxides (FeAl-LDH@BC) / H2O2 for phenol removal. Chemosphere, 266 128992, 1-9. DOI: 10.1016/j.chemosphere.2020.128992
  30. Xin, H., Xinhong, Q., Chenyan, H., Yawen, L. (2018). Treatment of heavy metal ions in wastewater using layered double hydroxides: A review. Journal of Dispersion Science and Technology, 39(6), 792-801, DOI: 10.1080/01932691.2017.1392318
  31. Xue, B., Hui, Z., Liguang, D. (2014). Review Layered Double Hydroxide-Based Nanocarriers for Drug Delivery. Pharmaceutics, 6, 298-332. DOI: 10.3390/pharmaceutics6020298
  32. Wen, J., Yang, K., Huang, J., Sun, S. (2021). Recent advances in LDH-based nanosystems for cancer therapy. Materials and Design, 198, 109298, DOI: 10.1016/j.matdes.2020.109298
  33. Feng, X., Jiao, Q., Chen, W., Dang, Y., Dai, Z., Suib, S.L., Zang, J., Zhao, Y., Li, H., Feng, C. (2021). Cactus-like NiCo2S4@NiFe LDH hollow spheres as an effective oxygen bifunctional electrocatalyst in alkaline solution. Applied Catalysis B: Environmental, 286, 119869. DOI: 10.1016/j.apcatb.2020.119869
  34. Bukhtiyarova, M.V. (2019). A review on effect of synthesis conditions on the formation of layered double hydroxides. Journal of Solid State Chemistry, 269, 494-506. DOI: 10.1016/j.jssc.2018.10.018
  35. Zubair, M., Daud, M., McKay, G., Shehzad, F., Al-Harthi, M.A. (2017). Recent progress in layered double hydroxides (LDH)-containing hybrids as adsorbents for water remediation. Appl. Clay Sci., 143, 279-292. DOI: 10.10116/j.clay.2017.04.002
  36. Zhao, M.Q., Zhang, Q., Huang, J.Q., Wei, F. (2012). Hierarchical nanocomposites derived from nanocarbons and layered double hydroxides - properties, synthesis, and applications. Adv. Funct. Mater., 22, 675–694. DOI: 10.1002/adfm.201102222
  37. Cao, Y., Li, G., Li, X. (2016). Graphene/layered double hydroxide nanocomposite: properties, synthesis, and applications. Chem. Eng. J., 292, 207–223. DOI: 10.1016/j.cej.2016.01.114
  38. Mishra, G., Dash, B., Pandey, S. (2018). Layered double hydroxides: a brief review from fundamentals to application as evolving biomaterials. Appl. Clay Sci., 153, 172–186, DOI: 10.1016/j.clay.2017.12.021
  39. Tichit, D., Layrac, G., Gérardin, C. (2019). Synthesis of layered double hydroxides through continuous flow processes: a review. Chem. Eng. J., 369, 302–332. DOI: 10.1016/j.cej.2019.03.057
  40. Forano, C., Hibino, T., Leroux, F., TaviotGueho, C. (2006). Layered double hydroxides. In Bergaya, F., Theng, B.K.G., Lagaly, G. (Eds.) Handbook of Clay Science vol. 1. Amsterdam: Elsevier Science BV
  41. Rives, V. (2001). Layered Double Hydroxides: Present and Future. New York: Nova Science Publishers, Inc
  42. Ian, T.S. (2015). Layered Double Hydroxides (LDHs): Synthesis, Characterization and Applications. Series: Materials Science and Technologies
  43. Costantino, U., Marmottini, F., Nocchetti, M., Vivani, R. (1998). New synthetic routes to hydrotalcite-like compounds - characterisation and properties of the obtained materials. Eur. J. Inorg. Chem., 1998(10), 1439–1446. DOI: 10.1002/(SICI)1099-0682(199810)1998:103.0.CO;2-1
  44. Conterosito, E., Beek, W.V., Palin, L., Croce, G., Perioli, L., Viterbo, D., Gatti, G., Milanesio, M. (2013). Development of a fast and clean intercalation method for organic molecules into layered double hydroxides. Crystal growth & Design, 13(3), 1162-1169. DOI: 10.1021/cg301505e
  45. Jubri, Z., Hussein, M.Z., Yahaya, A., Zainal, Z. (2012). The effect of microwave-assisted synthesis on the physico-chemical properties of pamoate-intercalated layered double hydroxide. Nanosci. Methods, 1, 152-163. DOI: 10.1080/17458080.2011.630036
  46. Benito, P., Guinea. I., Herrero. M., Labajos, F.M., Rives, V. (2007). Incidence of microwave hydrothermal treatments on the crystallinity properties of hydrotalcite-like compounds. Zeitschrift fur Anorg. und Allg. Chemie., 633, 1815–1819. DOI: 10.1002/ZAAC.200700178
  47. Bergadà, O., Vicente, I., Salagre, P., Cesteros, Y., Medina, F., Sueiras, J.E. (2007). Microwave effect during aging on the porosity and basic properties of hydrotalcites. Microporous Mesoporous Mater., 101, 363–373. DOI: 10.1016/j.micromeso.2006.11.033
  48. Abito, G., Bonasera, A., Prestopino, G., Orsini, A., Mattoccia, A., Martinelli, E., Pignataro, B., Medaglia, P.G. (2019). Layered Double Hydroxides: A Toolbox for Chemistry and Biology. Crystals, 9, 361. DOI: 10.3390/cryst9070361
  49. Zhao, M.Q., Zhang, Q., Huang, J.Q., Wei, F. (2012). Hierarchical nanocomposites derived from nanocarbons and layered double hydroxides-properties, synthesis, and applications. Adv. Funct. Mater., 22, 675–694. DOI: 10.1002/adfm.201102222
  50. Zhen, L., Zhaoling, M., Yanyong, W., Ru, C., Zhenjun, W., Shuangyin. W. (2018). LDHs derived nanoparticle-stacked metal nitride as interlayer for long-life lithium sulfur batteries. Science Bulletin, 63, 3, 169-175. DOI: 10.1016/j.scib.2017.12.018
  51. Zexuan, Z., Peilong, L., Xin, Z., Cun, H., Yuwen, L., Bin, Y., Ning, Z., Chao, L., Jiangfeng, S., Mingcan, L. (2021). Recent Advances in Layered-Double-Hydroxides Based Noble Metal Nanoparticles Efficient Electrocatalysts. Nanomaterials, 11, 2644, 1-17. DOI: 10.3390/nano11102644
  52. Newman, S.P., Jones, W. (1998). Synthesis, characterization and applications of layered double hydroxides containing organic guests. New J. Chem., 22, 105–115. DOI: 10.1039/A708319J
  53. Leroux, F., Taviot-Guého, C. (2005). Fine tuning between organic and inorganic host structure: New trends in layered double hydroxide hybrid assemblies. J. Mater. Chem., 15, 3628–3642. DOI: 10.1039/B505014F
  54. Rives, V., Ulibarri, M.A. (1999). Layered double hydroxides (LDH) intercalated with metal coordination compounds and oxometalates Coord. Chem. Rev., 181, 61–120. DOI: 10.1016/S0010-8545(98)00216-1
  55. Omwoma, S., Chen, W., Tsunashima, R., Song, Y.F. (2014). Recent advances on polyoxometalates intercalated layered double hydroxides: from synthetic approaches to functional material applications. Coord. Chem. Rev., 258–259, 58–71. DOI: 10.1016/j.ccr.2013.08.039
  56. Bouali, A.C., Serdechnova, M., Blawert, C., Tedim, J., Ferreira, M.G.S., Zheludkevich, M.L. (2020). Layered double hydroxides (LDHs) as functional materials for the corrosion protection of aluminum alloys: A review. Applied Materials Today, 21, 100857, 1-42. DOI: 10.1016/j.apmt.2020.100857
  57. Iqbal, M.A., Sun, L., Barrett, A.T., Fedel, M. (2020). Review Layered Double Hydroxide Protective Films Developed on Aluminum and Aluminum Alloys: Synthetic Methods and Anti-Corrosion Mechanisms. Coatings, 10, 428. DOI: 10.3390/coatings10040428
  58. Richetts, M. (2017). Characteristics, Preparation Routes and Metallurgical Applications of LDHs: An Overview. J. Material. Sci. Eng., 6(6), 1-11. DOI: 10.4172/2169-0022.1000397
  59. Ding, X., Wu, L., Chen, J., Zhang, G., Xie, Z., Sun, D., Jiang, B., Atrens, A., Pan, F. (2020). Enhanced protective nanoparticle-modified MgAl-LDHs coatings on titanium alloy. Surface and Coatings Technology, 404, 126449. DOI: 10.1016/j.surfcoat.2020.126449
  60. Liu, T., Zhou, H., Zhong, G., Yan, X., Su, X., Lin, Z. (2021). Synthesis of NiFeAl LDHs from electroplating sludge and Their excellent supercapacitor performance. Journal of Hazardous Materials, 404, 124113. DOI: 10.1016/j.jhazmat.2020.124113
  61. Sònia, A., Francesc, M., Didier, T., Javier, P. R., Johan, C.G., Jesús, E.S., Pilar, S., Yolanda, C. (2005). Aldol condensations over reconstructed Mg-Al hydrotalcites: structure-activity relationships related to the rehydration method. Chemistry 1(2), 728-739. DOI: 10.1002/chem.200400409
  62. Biplab, R., Anupam, S.R., Asit, B.P., Manirul, I.S.K, Asoke, P.C. (2016). Nano-structured Magnesium Oxide as Efficient Recyclable Catalyst for Knoevenagel and Claisen-Schmidt Condensation Reactions. Chemistry Select. 1, 15, 4778-47784, DOI: 10.1002/slct.201600380
  63. Chen, D., Li, Y., Zhang, J., Zhou, J., Guo, Y., Liu, H. (2012). Magnetic Fe3O4/ZnCr-layered double hydroxide composite with enhanced adsorption and photo catalytic activity. Chem. Eng. J., 185(186), 120–126. DOI: 10.1016/j.cej.2012.01.059
  64. Francisco, T., Castillo-Rodríguez, J.C., Tzompantzi-Flores, C., Raúl Pérez, H., Gómez, R., Santolalla-Vargas, C.E., Che-Galicia, G., Ramos-Ramírez, E. (2021). Addition of SnO2 over an oxygen deficient zirconium oxide (ZrxOy) and its catalytic evaluation for the photodegradation of phenol in water. Catalysis Today, DOI : 10.1016/j.cattod.2021.07.027
  65. Claudia, A., Reyna, N., Barrera-Diaz, C., Martínez-Miranda, V., Julia, P., Jaime, S.V. (2013). Photocatalytically enhanced Cr(VI) removal by mixed oxides derived from MeAl (Me:Mg and/or Zn) layered double hydroxides. Applied Catalysis B: Environmental, 140 (141), 546-551. DOI : 10.1016/j.apcatb.2013.04.053
  66. Sheldon, R.A. (2001). van Bekkum H. (Eds.), , Ch. 7. Fine Chemicals Through Heterogeneous Catalysis. Wiley-VCH, Weinheim
  67. Bukhtiyarova, M.V. (2019). A review on effect of synthesis conditions on the formation of layered double hydroxides. J. Solid State Chem., 269, 494–506. DOI: 10.1016/j.jssc.2018.10.018
  68. Qiong, Z., Huan, L. (2014). Mg/Al layered double hydroxides prepared by microwave-assisted co-precipitation method for the removal of bromate. Huan Jing Ke Xue, 35, 4, 1566-1575
  69. Hyung Mi, L., Mi, R.K., Sang, C.L., Seung Ho, L., Kwang, J.K. (2005). Effect of Microwave Heating on the Synthesis of Layered Double Hydroxide. Material Science Forum. 492-493, 743-748
  70. Choudary, B.M., Kantam, M.L., Rahman, A., Reddy, C.V., Rao, K.K. (2001). The First Example of Activation of Molecular Oxygen by Nickel in Ni-Al Hydrotalcite: A Novel Protocol for the Selective Oxidation of Alcohols. Angew. Chem. Int. Ed., 40, 763-766. DOI: 10.1002/1521-3773(20010216)40:43.0.CO;2-T
  71. Choudary, B.M., Kantam, M.L., Rahman, A., Reddy, C.R.V. (2003). Selective reduction of aldehydes to alcohols by calcined Ni-Al hydrotalcite. Journal of Molecular Catalysis A: Chemical, 206, 145–151. DOI: 10.1016/S1381-1169(03)00413-8
  72. Kantan, M.L., Kavita, B., Rahman, A., Sateesh, M. (1998). Mg-AlCO3 Catalysed Ring Opening of Oxiranes with TMSN3. Indian Journal of Chemistry Sect. B. (37), 1039-1041.
  73. Kim, T.H., Lee, G.J., Kang, J.H., Kim, H.J., Kim, T.I., Oh, J.M. (2014). Anticancer Drug-Incorporated Layered Double Hydroxide Nanohybrids and Their Enhanced Anticancer Therapeutic Efficacy in Combination Cancer Treatment. BioMed Research International. 193401, 1-11. DOI: 10.1155/2014/193401
  74. Hashim, N., Hussein, MZ., Isa, I.M., Kamari, A., Mohamed, A., Azmi, M., Adila, M.J., Haf sah, T. (2014). Synthesis and controlled release of cloprop herbicides from cloprop layered double hydroxide and cloprop zinc layered hydroxide nanocomposites. Open Journal of Inorganic Chemistry, 4(1), 1-9. DOI: 10.4236/ojic.2014.41001
  75. Hai Nguyen, T., Chu-Ching, L., Huang-Ping, C. (2018). Amino acids-intercalated Mg/Al layered double hydroxides as dual-electronic adsorbent for effective removal of cationic and oxyanionic metal ions. Separation and Purification Technology. 192, 36-45. DOI: 10.1016/j.seppur.2017.09.060
  76. Hirokazu, N., Natsuko, W., Mitsutomo, T. (2004). Intercalation of amino acids and peptides into Mg-Al layered double hydroxide by reconstruction method. International Journal of Pharmaceutics. 269(2), 469-478. DOI: 10.1016/j.ijpharm.2003.09.043
  77. Yang, Q.Z., Chang, Y.Y., Zhao, H.Z. (2013). Preparation and Antibacterial Activity of Lysozyme and Layered Double Hydroxide Nanocomposites. Water. Res., 47, 6712–6718. DOI: 10.1016/j.watres.2013.09.002
  78. Rahman, A., Al-Dayeb, S.S. (2011). Structure characterization and application of Ni hydrotalcite as solid bas catalysts for organic transformations. J. Chil. Chem. Soc., 56(1), 598-600. DOI: 10.4067/S0717–97072011000100017
  79. Man, P., Chang-Il, L., Young, J. S. (2009). Hybridization of the natural antibiotic, cinnamic acid, with layered double hydroxides (LDH) as green pesticide. Environmental Science and Pollution Research. 17(1), 203-209. DOI: 10.1007/s11356-009-0235-0
  80. Collins, I.E., Marco, T., Xiaogang, Y., Jun, H., Cheng-Gong, S. (2018). Ultrasonic and Hydrothermal Mediated Synthesis Routes for Functionalized Mg-Al LDH: Comparison Study on Surface Morphology, Basic Site Strength, Cyclic Sorption Efficiency and Effectiveness. Ultrasonics Sonochemistry, 40, 341-352. DOI: 10.1016/j.ultsonch.2017.07.013
  81. Bayu, W., Puji, K., Purbaningtias, T.E., Fatimah, I. (2015). Synthesis and Characterization of Hydrotalcite at Different Mg/Al Molar Ratios. Procedia Chemistry, 17, 21–26. DOI: 10.1016/j.proche.2015.12.115
  82. Wu, L. (2017). Influence of reaction temperature on the controlled growth of Mg-Al LDH film. Int. J. Electrochem. Sci., 12, 6352–6364. DOI: 10.20964/2017.07.74
  83. Zai, J.T., Liu, Y.Y., Li, X.M., Ma, Z.F., Qi, R.R., Qian, X.F. (2017). 3D hierarchical Co– Al layered double hydroxides with long-term stabilities and high rate performances in supercapacitors. Nano-Micro Lett., 9, 21–29. DOI: 10.1007/s40820-016-0121-5
  84. Choudary, B.M., Kantam, M.L., Reddy, C.V., Aranganathan, S., Lakshmi, P.S., Figueras, F. (2000). Mg–Al–O–t -Bu hydrotalcite: a new and efficient heterogeneous catalyst for transesterification. J. Molec. Catal. A, 159, 411– 416. DOI: 10.1016/S1381-1169(00)00209-0
  85. Nishesh Gupta, K., Md, S., Kim, S., Kim, K.S. (2020). Microscopic, spectroscopic, and experimental approach towards understanding the phosphate adsorption onto Zn–Fe layered double hydroxide. Journal of Molecular Liquids , 297, 111935. DOI: 10.1016/j.molliq.2019.111935
  86. Karolina, R., Matusik, J., Kuligiewicz, A., Leiviskä, T., Cempura, G. (2021). Surface chemistry and structure evaluation of Mg/Al and Mg/Fe LDH derived from magnesite and dolomite in comparison to LDH obtained from chemicals. Applied Surface Science, 538, 147923. DOI: 10.1016/j.apsusc.2020.147923
  87. Fatima, Z.M, Abderrahim, K., Mohamed, A., Noureddine, B. (2017). Zn–Al layered double hydroxides intercalated with carbonate, nitrate, chloride and sulfate ions: Synthesis, characterization and dyes removal properties. Journal of Taibah University for Science. 11, 1, 90-100. DOI: 10.1016/j.jtusci.2015.10.007
  88. Luíz, P.F.B., Denise, E., Luciano de, M.G, Frederico, G.P., da Costa, L.M., Tronto, J. (2018). Layered Double Hydroxides as Hosting Matrices for Storage and Slow Release of Phosphate Analyzed by Stirred-Flow Method. Materials Research, 21(6), 20171004. DOI: 10.1590/1980-5373-MR-2017-1004
  89. Giphin, G., Saravana, K.M.P. (2017). Synthesizing methods of layered double hydroxides and its use in the fabrication of dye Sensitised solar cell (DSSC): A short review. Materials Science and Engineering, 263, 032020, 1-9. DOI: 10.1088/1757-899X/263/3/032020
  90. Chia-Hsuan, L., Hsueh-Liang, C., Weng-Sing, H., Moo-Chin, W., Horng-Huey, K. (2017). Synthesis and optical properties of Mg-Al layered double hydroxides precursor powders. AIP Advances, 7, 12, 5005, 1-11. DOI: 10.1063/1.4990832
  91. Molano-Mendoza, M., Donneys-Victoria, D., Marriaga-Cabrales, N., Angel Mueses, M., Li Puma, G., Machuca-Martínez, F. (2018). Synthesis of Mg-Al layered double hydroxides by electrocoagulation. Methods X, 5, 915-923. DOI: 10.1016/j.mex.2018.07.019
  92. Marcu, I., Urdă, A., Popescu, I., Hulea, V. (2017). Layered Double Hydroxides-Based Materials as Oxidation Catalysts. In M. Putz, & M. Mirica (Ed.) Sustainable Nanosystems Development, Properties, and Applications. Hershey, PA: IGI Global. DOI: 10.4018/978-1-5225-0492-4.ch003
  93. Carrado, K.A., Csencsits, R., Thiyagarajan, P., Seifert, S., Macha, S.M., Harwood, J.S. (2002). Crystallization and textural porosity of synthetic clay minerals. Journal of Materials Chemistry, 12, 3228-3237. DOI: 10.1039/b204180b
  94. Said, A., Mohammed, N.B., Sadik, A., Hamid, Z., Omar, Q. (2020). Effect of Mg/Al molar ratio on the basicity of Mg-Al mixed oxide derived from Mg-Al hydrotalcite. Mediterranean Journal of Chemistry, 10, 625-633. DOI: 10.13171/mjc10602007021464sa
  95. Hongri, S., Haohong, D., Chunping, C., Jean-Charles, B., Dermot, O.H. (2019). Bifunctional acid–base mesoporous silica@aqueous miscible organic-layered double hydroxides. RSC Adv., 9, 3749-3754. DOI: 10.1039/C9RA00188C
  96. Debecker, D.P., Gaigneaux, E.M., Busca, Guido. (2009). Exploring, Tuning, and Exploiting the Basicity of Hydrotalcites for Applications in Heterogeneous Catalysis. Chemistry. 15, 3920–3935. DOI: 10.1002/chem.200900060
  97. Ibrahim, R., Lwin, Y. (2010). Adsorbents derived from Mg-Al hydrotalcite like compounds for high temperature hydrogen storage. Journal of Applied Sciences, 10(12), 1128-1133. DOI: 10.3923/jas.2010.1128.1133
  98. Saikia, H., Basumatary, S. (2019). MgRuAl-layered Double Hydroxides (LDH): An Efficient Multifunctional Catalyst for Aldol Condensation and Transfer Hydrogenation Reactions. Current Catalysis, 4, 8. DOI: 10.2174/2211550108666190418125857
  99. Shanshan, X., Sarayute, C., Yan, S., Shaojun, X., Yi-chi, W., Sarah, H., Yibing, M., Yilai, J., Cristina, E.S., Huanhao, C., Xiaolei, F., Christopher, H. (2020). Mechanistic study of non-thermal plasma assisted CO2 hydrogenation over Ru supported on MgAl layered double hydroxide. Applied Catalysis B Environmental B, 268, 118752, DOI: 10.1016/j.apcatb.2020.118752
  100. Ateeq, R., Al-Dayeb, S.S. (2011). Structure characterization and application of Ni hydrotalcite as solid bas catalysts for organic transformations. J. Chil. Chem. Soc., 56(1), 598-600
  101. Harding, H., Peters, A.W., Nee, J.R.D. (2001). New developments in FCC catalyst technology. Appl. Catal. A, 221, 389. DOI: 10.1016/S0926-860X(01)00814-6
  102. Xavier, K.O., Sreekala, R., Rashid, K.K.A., Yusuff, K.K.M., Sen, B. (1999). Doping effects of cerium oxide on Ni/Al2O3 catalysts for methanation. Catal. Today, 49, 17–21. DOI: 10.1016/s0920-5861(98)00403-9
  103. Santos, R.M.M.D., Gonçalves, R.G.L., Constantino, V.R.L., Santilli, C.V., Borges, P.D., Tronto, J., Pinto, F.G. (2017). Adsorption of Acid Yellow 42 dye on calcined layered double hydroxide: effect of time, concentration, pH and temperature. Appl. Clay Sci., 140, 132– 139. DOI: 10.1016/j.clay.2017.02.005
  104. Octavian D. Pavel, Didier T, Ioan-Cezar M (2012). Acido-basic and catalytic properties of transition-metal containing Mg–Al hydrotalcites and their corresponding mixed oxides. Applied Clay Science, 61, 52-58. DOI: 10.1016/j.clay.2012.03.006
  105. Fahimeh, A, Mokhtari, J., Tahoori, F. (2019). Layered double hydroxides (LDHs): As efficient heterogeneous catalyst for the cyanosilylation of aromatic aldehydes. Phosphorus, Sulfur, and Silicon and the Related Elements, 194 (1-2), 76–82. DOI: 10.1080/10426507.2018.1492920
  106. Rahman, A. (2013). Structure characterization and application of Ni hydrotalcite as environmentally friendly catalysts for reductive amination of benzaldehyde. International Journal of Engineering Sciences & Emerging Technologies, 56(1), 598-600
  107. Rahman, A., Pelletier, A., Mupa, M., Mahamadi, C., Musekiwa, C. (2016). Environment-Friendly Reduction of Aromatics to Alicyclic Compounds at Room Temperature Using Superactive Calcined Ni-Al Hydrotalcite Catalysts. American Journal of Applied Chemistry, 4(1), 18-23. DOI: 10.11648/j.ajac.20160401.14
  108. Choudary, B.M., Someshwar, T., Reddy, C.V., Kantam, M.L., Ratnam K.J., Sivaji, L.V. (2003). The first example of bromination of aromatic compounds with unprecedented atom economy using molecular bromine. Applied Catalysis A: General, 251, 397–409. DOI: 10.1016/S0926-860X(03)00379-X
  109. Palomares, A.E., Franch, C., Corma, A. (2011). A study of different supports for the catalytic reduction of nitrates from natural water with a continuous reactor. Catal. Today, 172 (1), 90-94. D O I: 10.1016/j.cattod.2011.05.015
  110. Adamski, A., Gil, B., Sojka, S. (2008). Role of vanadium sites in NO and O2 adsorption processes over VOx/CeO2-ZrO2 catalysts EPR and IR studies. Catal. Today, 137, 292-299. DOI: 10.1016/j.cattod.2008.02.002
  111. Olena, D., Eleonora, B., Alexey, K. (2018). Propylene oxide polymerization in the presence of layered double hydroxides. Chem. Didact. Ecol. Metrol. 23(1-2), 137-142. DOI: 10.1515/cdem-2018-0009
  112. Laycock, D.E., Collacott, R.J., Skelton, D.A., Tchir, M.F. (1991). Stereospecific polymerization of propylene oxide on thermally activated synthetic hydrotalcite. Journal of Catalysis, 2, 354-358. DOI: 10.1016/0021-9517(91)90119-O
  113. Tengfei, L., Lin, J.W.Z., Haralampos, N.M., Yu-Fei, S. (2018). Robust and Environmentally Benign Solid Acid Intercalation Catalysts for the Aminolysis of Epoxides. ChemCatChem, 10, 20, 4699-4706. DOI: 10.1002/cctc.201801119
  114. Weijie, Z., Pingping, J., Ying, W., Jian, Z., Pingbo, Z. (2016). Manganese(III) Tetraphenylporphyrin Encapsulated by Ion Modified Hexagonal Mesoporous Silica with Unexpected Enhanced Epoxidation Selectivity. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano-Metal Chemistry, 46, 1765–1772. DOI: 10.1080/15533174.2015.1137059
  115. Jiang, P., Chen, M., Dong, Y., Lu, Y., Ye, X., Zhang, W. (2009). Novel Two-Phase Catalysis with Organometallic Compounds for Epoxidation of Vegetable Oils by Hydrogen Peroxide. J. Am. Oil Chem. Soc., 87, 83-91. DOI: 10.1007/s11746-009-1469-1
  116. Li, X., Jiang, P., Lu, Y., Zhang, W., Dong, Y. (2012). Synthesis of Hydrotalcite-like Com ounds Intercalated by 12- Phosphorus Tungsten Heteropoly Acid and Catalytic Performance on the Epoxidation of Fatty Acid Methyl Esters. Acta Chim. Sin., 70, 544. DOI: 10.6023/A1108261
  117. Sahoo, D.P., Nayak, S., Reddy, K.H., Martha, S., Parida, K. (2018). Fabrication of a o(OH)2/ZnCr LDH "p-n" Heterojunction Photocatalyst with Enhanced Separation of Charge Carriers for Efficient Visible-Light Driven H2 and O2 Evolution. Inorg. Chem., 57(7), 3840–3854. DOI: 10.1021/acs.inorgchem.7b03213
  118. Sahoo, M., Mansingh, S., Subudhi, S., Mohapatra, P., Parida, K.M. (2019). A plasmonic AuPd bimetallic nanoalloy decorated over a GO/LDH hybrid nanocomposite via a green synthesis route for robust Suzuki coupling reactions: a paradigm shift towards a sustainable future. Catalysis Science and Technology, 9, 4678– 4692. DOI: 10.1039/C9CY01085H
  119. Sahoo, M., Singha, S., Parida, K.M. (2011). Amine functionalized layered double hydroxide: a reusable catalyst for aldol condensation. New J. Chem., 35, 2503–2509. DOI: 10.1039/C1NJ20492K
  120. Kuljiraseth, J., Wangriya, A., Malones, J.M.C., Klysubun, W., Jitkarnka, S. (2018). Synthesis and Characterization of AMO LDH-derived mixed oxides with various Mg/Al ratios as acid–basic catalysts for Esterification of benzoic acid with 2-ethylhexanol. Applied Catalysis B: Environmental, 243, 415-427. DOI: 10.1016/j.apcatb.2018.10.073
  121. Walker, V., Mills, G.A. (2001). Urine 4- heptanone: a β-oxidation product of 2- ethylhexanoic acid from plasticizers. Clin. Chim. Acta., 306, 51–61. DOI: 10.1016/s0009-8981(01)00390-4
  122. Parida, K., Das, J. (2000). Mg/Al hydrotalcites: preparation, characterization and ketonisation of acetic acid. J. Molec. Catal. A Chem., 151, 185–192. DOI: 10.1016/S1381-1169(99)00240-X
  123. Wang, Y., Yan, D., Hankari, S.E., Zou, Y., Wang, S. (2018). Recent progress on layered double hydroxides and their derivatives for electrocatalytic water splitting. Advanced Science, 5(8), 1800064. DOI: 10.1002/advs.201800064
  124. Suen, N.T., Hung, S.F., Quan, Q., Zhang, N., Xu, Y.J., Chen, H.M. (2017). Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chemical Society Reviews, 46(2), 337–365. DOI: 10.1039/C6CS00328A
  125. Wu, L., Yu, L., Xiao, X., Zhang, F., Song, S., Chen, S., Ren, Z. (2020). Review Article Recent Advances in Self-Supported Layered Double Hydroxides for Oxygen Evolution Reaction. AAAS Research, 2020, 3976278. DOI: 10.34133/2020/3976278
  126. Trotochaud, L., Young, S.L., Ranney, J.K., Boettcher, S.W. (2014). Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation. J. Am. Chem. Soc., 136, 6744-6753. DOI: 10.1021/ja502379c
  127. Lyu, F., Wang, Q., Choi, S.M., Yin, Y. (2019). Noble-metal-free electrocatalysts for oxygen evolution. Small (Weinheim an der Bergstrasse, Germany), 15(1), 1804201. DOI: 10.1002/smll.201804201
  128. Vij, V., Sultan, S., Harzandi, A.M. Abhishek, M., Jitendra, N.T., Wang-Geum, L., Taeseung, Y., Kwang, S.K. (2017). Nickel-based electrocatalysts for energy-related applications: oxygen reduction, oxygen evolution, and hydrogen evolution reactions. ACS Catalysis, 7(10) , 7196–7225. DOI: 10.1021/acscatal.7b01800
  129. Xiao, X., Huang, D., Fu, Y. Ming, W., Xingxing, J., Xiaowei, L., Lin, G., Shuangshuang, L., Mengkui, W., Chuan, Z., Yan, S. (2018). Engineering NiS/Ni2P heterostructures for efficient electrocatalytic water splitting. ACS Applied Materials & Interfaces, 10(5), 4689–4696. DOI: 10.1021/acsami.7b16430
  130. Mingfei, S., Ruikang, Z., Zhenhua, L., Min, W., David, G.E., Xue, D. (2015). Layered double hydroxides toward electrochemical energy storage and conversion: design, synthesis and applications. Chemical Communications, 51, 15880-15893. DOI: 10.1039/C5CC07296D
  131. Jing, H., Xiaomin, T., Qing, D., Zhiqiang, L., Huamin, Z., Anmin, Z., Zhizhang, Y., Xianfeng, L. (2021). Layered double hydroxide membrane with high hydroxide conductivity and ion selectivity for energy storage device. Nature Communications, 12, 3409, 1-10. DOI: 10.1038/s41467-021-23721-9
  132. Likius, D., Rahman, A., Zivayi, C., Uahengo, V. (2020). Recent Advances on the Use of Nickel Nano Layered Double Hydroxides as Green, and Efficient, Catalysts for Water Splitting. Catalysis Letters, 150, 1942–1956. DOI: 10.1007/s10562-019-03095-w
  133. Chen, C., Li, T., Shiqian, D., Wei, C., Yanyong, W., Yuqin, Z., Shuangyin, W. (2020). Advanced Exfoliation Strategies for Layered Double Hydroxides and Applications in Energy Conversion and Storage. Advanced Functional Materials. 30, 14, 1909832. DOI: 10.1002/adfm.201909832
  134. Rong, L., Yanyong, W., Dongdong, L., Yuqin, Z., Shuangyin, W. (2017). Water-Plasma-Enabled Exfoliation of Ultrathin Layered Double Hydroxide Nanosheets with Multivacancies for Water Oxidation. Advanced Materials, 29, 30, 1701546. DOI: 10.1002/adma.201701546
  135. Uwasu, M., Hara, K., Yabar, H. (2014). World cement production and environmental implications. Environ. Dev., 10, 36–47. DOI: 10.1016/j.envdev.2014.02.005
  136. Kim, Y., Worrell, E. (2002). CO2 emission trends in the cement industry: An international comparison. Mitig. Adapt. Strateg. Glob. Chang., 7, 115–133. DOI: 10.1023/A:1022857829028
  137. Tuutti, K. (1982). Corrosion of Steel in Concrete, Technical Report, Cement-och Betonginst CBI Sweden, Stockholm, Sweden
  138. Bertolini, L., Elsener, B., Pedeferri, P., Redaelli, E., Polder, R. (2013). Corrosion of Steel in Concrete Volume 392. Weinheim, Germany: Wiley-Vch
  139. Cai, H., Liu, X. (1998). Freeze-thaw durability of concrete: Ice formation process in pores. Cem. Concr. Res., 28, 1281–1287. DOI: 10.1016/S0008-8846(98)00103-3
  140. Huovinen, S. (1990). Abrasion of Concrete by Ice in Arctic Sea Structures, Technical, Research Centre of Finland, Espoo, Finland
  141. Jacobsen, S., Scherer, G.W., Schulson, E.M. (2015). Concrete–ice abrasion mechanics. Cem. Concr. Res., 73, 79–95. DOI: 10.1016/j.cemconres.2015.01.001
  142. Attiogbe, E.K., Rizkalla, S.H. (1988). Response of concrete to sulfuric acid attack. ACI Mater. J., 85, 481–488
  143. Yoon, S., Moon, J., Bae, S., Duan, X., Giannelis, E.P., Monteiro, P.M. (2014). Chloride adsorption by calcined layered double hydroxides in hardened Portland cement paste. Mater. Chem. Phys., 15, 376–386. DOI: 10.1016/j.matchemphys.2014.02.026
  144. Mir, Z.M., Bastos, A., Höche, D., Zheludkevich, M.L. (2020). Recent Advances on the Application of Layered Double Hydroxides in Concrete. Materials, 13, 1426. DOI: 10.3390/ma13061426
  145. Zahid, M.M., Alexandre, B., Daniel, H., Mikhail, L.Z. (2020). Recent Advances on the Application of Layered Double Hydroxides in Concrete A Review, Materials. 13, 1426; 1-23. DOI: 10.3390/ma13061426
  146. José Ignacio, V., Mònica, A., Marcelo, A. (2012). Layered double hydroxides (LDHs) as functional fillers in polymer composites. Advances in Polymer Nanocomposites: Types and applications 91-130, 1st, Chapter: 4, Publisher: Woodhead Publishing, Editors: Fengge Gao. DOI: 10.1533/9780857096241.1.91
  147. Du, L.C., Qu, B.J. (2007). Effects of synthesis conditions on crystal morphological structures and thermal degradation behavior of hydrotalcites and flame retardant and mechanical properties of EVA/hydrotalcite blends. Polym. Compos., 28, 131-138. DOI: 10.1002/pc.20279
  148. Jiao, C.M., Wang, Z.Z., Ye, Z., Hu, Y., Fan, W.C. (2006). Flame retardation of ethylenevinyl acetate copolymer using nano magnesium hydroxide and nano hydrotalcite. J. Fire Sci., 24, 47-6 4. DOI: 10.1177/0734904106053160
  149. Costache, M.C., Heidecker, M.J., Manias, E., Camion, G., Frache, A., Beyer, G. (2007). The influence of carbon nanotubes, originally modified montmorillonites and layered double hydroxides on the thermal degradation and fire retardancy of polyethylene, ethylene-vinyl acetate polystyrene. Polymer, 48, 6532-6545. DOI: 10.1016/j.polymer.2007.08.059
  150. Prasad, C., Tang, H., Liu, W. (2018). Magnetic Fe3O4 based layered double hydroxides (LDHs) nanocomposites (Fe3O4/LDHs): recent review of progress in synthesis, properties and applications. Journal of Nanostructure in Chemistry, 8, 393–412. DOI: 10.1007/s40097-018-0289-y
  151. Daud, M., Kamal, M.S., Shehzad, F., Al-Harthi, M.A. (2016). Graphene/layered double hydroxides nanocomposites: a review of recent progress in synthesis and applications. Carbon, 104, 241–252. DOI: 10.1016/j.carbon.2016.03.057
  152. Nalawade, P., Aware, B., Kadam, V.J., Hirlekar, R.S. (2009). Layered Double Hydroxides: A Review. Journal of Scientific & Industrial Research, 267(68), 267-272
  153. Choy, J.H., Kwak, S.Y., Park, J.S., Jeong, Y.J. (2001). Cellular uptake behavior of [c32P] labeled ATP–LDH nanohybrids. J. Mater. Chem., 11, 1671-1674. DOI: 10.1039/B008680
  154. Umberto, C., Valeria, B., Giuliana, G., Francesca, M., Morena, N., Loredana, T., Vittoria, V. (2009). New Polymeric Composites Based on Poly(caprolactone) and Layered Double Hydroxides Containing Antimicrobial Species. Applied Materials and Interfaces, 1, 3, 668-677. DOI: 10.1021/am8001988
  155. Umberto, C., Morena, N., Michele, S., Riccardo, V. (2009). Recent progress in the synthesis and application of organically modified hydrotalcites. Z. Kristallogr., 224, 273–281. DOI: 10.1524/zkri.2009.1153
  156. Mardani, H.R. (2017). (Cu/Ni)–Al layered double hydroxides@Fe3O4 as efficient magnetic nano composite photo catalyst for visible light degradation of methylene blue. Res. Chem. Intermed., 10, 5795–5810. DOI: 10.1007/s11164-017-2963-y
  157. Chunming, S (2017). Environmental implications and applications of engineered nanoscale magnetite and its hybrid nanocomposites: A review of recent literature. J. Hazard. Mater., 322(Pt A): 48–84. DOI: 10.1016/j.jhazmat.2016.06.060
  158. Lu, L., Li, J., Ng, D.H., Yang, P., Song, P., Zuo, M. (2017). Synthesis of novel hierarchically porous Fe3O4@MgAl–LDH magnetic microspheres and its superb adsorption properties of dye from water. J. Ind. Eng. Chem., 46, 315–323. DOI: 10.1016/j.jiec.2016.10.045
  159. Parida, K., Satpathy, M., Mohapatra, L. (2012). Incorporation of Fe3+ into Mg/Al layered double hydroxide framework effects on textural properties and photocatalytic activity for H2 generation. J. Mater. Chem., 22, 7350–7357. DOI: 10.1039/C2JM15658J
  160. Ran-ran, S., Liang-guo, Y., Kun, Y., Yuan-feng, H., Bin, D. (2015). Adsorption of Cd(II) by Mg–Al–CO3- and magnetic Fe3O4/Mg–Al–CO3-layered double hydroxides: Kinetic, isothermal, thermodynamic and mechanistic studies. Journal of Hazardous Materials, 299, 42-49. DOI: 10.1016/j.jhazmat.2015.06.003Get
  161. Zhang, H., Zhang, G., Bi, X., Chen, X. (2013). Facile assembly of a hierarchical core@shell Fe3O4@CuMgAl-LDH (layered double hydroxide) magnetic nanocatalyst for the hydroxylation of phenol. J. Mater. Chem. A, 1, 5934– 5942. DOI: 10.1039/C3TA10349H
  162. Komarala, E.V.P., Nigam, S., Aslam, M., Bahadur, D. (2016). In-vitro evaluation of layered double hydroxide–Fe3O4 magnetic nanohybrids for thermo-chemotherapy. New J. Chem., 40, 4 23–433. DO: 10.1039/C5NJ01701G
  163. Wang, R.X., Wen, T., Wu, X.L., Xu, A.W. (2014). Highly efficient removal of humic acid from aqueous solutions by Mg/Al layered double hydroxides-Fe3O4 nanocomposites. RSC Advances, 4, 21802-21809. DOI: 10.1039/C4RA02212B
  164. Hu, W., Wu, X., Jiao, F., Yang, W., Zhou, Y. (2016). Preparation and characterization of magnetic Fe3O4@sulfonated β-cyclodextrin intercalated layered double hydroxides for methylene blue removal. Desalination Water Treat., 57, 1–12. DOI : 10.1080/19443994.2016.1155173
  165. Zhang, X., Wang, J., Li, R., Dai, Q., Gao, R., Liu, Q., Zhang, M. (2013). Preparation of Fe3O4@C@layered double hydroxide composite for magnetic separation of uranium. Ind. Eng. Chem. Res., 52, 10152–10159. DOI: 10.1021/ie3024438
  166. Chen, D., Li, Y., Zhang, J., Zhou, J., Guo, Y., Liu, H. (2012). Magnetic Fe3O4/ZnCr-layered double hydroxide composite with enhanced adsorption and photo catalytic activity. Chem. Eng. J., 185(186): 120–126. DOI: 10.1016/j.cej.2012.01.059
  167. Wang, X., Zhou, S., Wu, L. (2014). Fabrication of Fe3+ doped Mg/Al layered double hydroxides and their application in UV light shielding coatings. J. Mater. Chem. C., 2, 5752–5758. DOI: 10.1039/C4TC00437J
  168. Yan, L., Yang, K., Shan, R., Yu, H., Du, B. (2015). Calcined ZnAl- and Fe3O4/ZnAl layered double hydroxides for efficient removal of Cr(VI) from aqueous solution. RSC Advances, 5, 96495–96503. DOI: 10.1039/C5RA17058C
  169. Pan, D., Zhang, H., Fan, T., Chen, J., Duan, X. (2011). Nearly monodispersed core–shell structural Fe3O4@DFUR–LDH sub micro particles for magnetically controlled drug delivery and release. Chem. Commun., 47, 908– 910. DOI: 10.1039/C0CC01313G
  170. Ni, J., Xue, J., Xie, L., Shen, J., He, G., Chen, H. (2018). Construction of magnetically separable NiAl LDH/Fe3O4-RGO nanocomposites with enhanced photocatalytic performance under visible light. Phys. Chem. Chem. Phys., 20, 414–421. DOI: 10.1039/C7CP06682A
  171. Koilraj, P., Sasaki, K. (20160. Fe3O4/MgAlNO3 layered double hydroxide as a magnetically separable sorbent for the remediation of aqueous phosphate. J. Environ. Chem. Eng., 4, 984–991. DOI: 10.1016/j.jece.2016/01.005
  172. Moaser, A.G., Khoshnavazi, R. (2017). Facile synthesis and characterization of Fe3O4@MgAl-LDH@STPOM nanocomposite with highly enhanced and selective degradation of methylene blue. New J. Chem., 41, 9472–9481. DOI: 10.1039/C7NJ00792B
  173. Mi, F., Chen, X., Ma, Y., Yin, S., Yuan, F., Zhang, H. (2011). Facile synthesis of hierarchical core–shell Fe3O4@MgAl–LDH@Au as magnetically recyclable catalysts for catalytic oxidation of alcohols. Chem. Commun., 47, 12804–12806. DOI: 10.1039/c1cc15858a
  174. Chen, D., Li, Y., Zhang, J., Li, W., Zhou, J., Shao, L., Qian, G. (2012). Efficient removal of dyes by a novel magnetic Fe3O4/ZnCr-layered double hydroxide adsorbent from heavy metal wastewater. J. Hazard. Mater., 243, 152–160. DOI: 10.1016/j.jhazmat.2012.10.014
  175. Shan, R., Yan, L., Yang, K., Yu, S., Hao, Y., Yu, H., Du, B. (2014). Magnetic Fe3O4/MgAlLDH composite for effective removal of three red dyes from aqueous solution. Chem. Eng. J., 15, 38–46. DOI: 10.1016/j.cej.2014.04.105
  176. Chen, X., Mi, F., Zhang, H., Zhang, H. (2012). Facile synthesis of a novel magnetic coreshell hierarchical composite submicrospheres Fe3O4@CuNiAl-LDH under ambient conditions. Mater. Lett., 69, 48–51. DOI: 10.1016/j.matlet.2011.11.052
  177. Wu, X.L., Wang, L., Chen, C.L., Xu, A.W., Wang, X.K. (2011). Waterdispersible magnetite-graphene-LDH composites for efficient arsenate removal. J. Mater. Chem., 21, 17353– 17359. DOI: 10.1039/C1JM12678D
  178. Zhao, X., Wang, W.Y., Li, X.D., Li, S., Song, F. (2018). Core-shell structure of Fe3O4@MTXLDH/Au NPs for cancer therapy. Mater. Sci. Eng. C, 89, 422–428. DOI: 10.1016/j.msec.2018.04.024
  179. Shao, M., Ning, F., Zhao, J., Wei, M., Evans, D.G., Duan, X. (2012). Preparation of Fe3O4@SiO2@layered double hydroxide core– shell microspheres for magnetic separation of proteins. J. Am. Chem. Soc., 134, 1071–1077. DOI: 10.1021/ja2086323
  180. Magdalena, W., Małgorzata, K.K., Alina, P., Grzegorz, R., Tomasz, B. (2019). Removal of Heavy Metals and Metalloids from Water Using Drinking Water Treatment Residuals as Adsorbents: A Review. Minerals, 9, 487, 1-17. DOI: 10.3390/min9080487
  181. Marcella, B., Francesco, M. (2018). Layered double hydroxides (LDHs): versatile and powerful hosts for different applications. Journal of Analytical & Pharmaceutical Research, 7, 1, 14-12. DOI: 10.15406/japlr.2018.07.00206
  182. Lekbira, E.M., Mountassir, E.M., El-Mostafa, M., Claude, F., Mohammadine, E.H., Samir, B., Abdelaaziz, A.T., Salah, R. (2021). ZnCr-LDHs with dual adsorption and photocatalysis capability for the removal of acid orange 7 dye in aqueous solution. Journal of Science: Advanced Materials and Devices, 6, 1, 118-126. DOI: 10.1016/j.jsamd.2020.08.002
  183. Dang, M., Hue, T.M., Trinh, D.V., Nguyen, N.K., Nguyen, T., Dung, D., Tran, D., Hoang, V., Phan, H., Huynh, C.D. (2018). Enhanced Photocatalytic Activity for Degradation of Organic Dyes Using Magnetite CoFe2O4/BaTiO3 Composite. Journal of Nanoscience and Nanotechnology, 18, 11, 7850-7857. DOI: 10.1166/jnn.2018.15542
  184. Osama, S., Hicham, M.K. (2020). Designing Dual-Function Nanostructures for Water Purification in Sunlight. Appl. Sci., 10, 1786; 1-19. DOI: 10.3390/app10051786
  185. Starukh, H., Levytska, S. (2019). The simultaneous anionic and cationic dyes removal with Zn Al layered double hydroxides. Applied Clay Science, 180(8), 105183. DOI: 10.1016/j.clay.2019.105183
  186. Pshinko, G.N. (2013). Layered Double Hydroxides as Effective Adsorbents for U(VI) and Toxic Heavy Metals Removal from Aqueous Media. Journal of Chemistry, 347178, 1-9. DOI: 10.1155/2013/347178
  187. Linghu, W.; Yang, H.; Sun, Y.; Sheng, G.; Huan, Y (2017). One–pot synthesis of LDH/GO composites as high effective adsorbent for the decontamination of U(VI). ACS Sustain. Chem. Eng., 5, 5608–5616. DOI: 10.1021/acssuschemeng.7b01303
  188. Saber, O.; Aljaafari, A.; Osama, M.; Alabdulgader, H (2018). Accelerating the Photocatalytic Degradation of Green Dye Pollutants by Using a New Coating Technique for Carbon Nanotubes with Nanolayered Structures and Nanocomposites. Chemistry Open, 7, 833–841. DOI: 10.1002/open.201800173
  189. Reena, S., Neetu, G., Anurag, M., Rajiv, G. (2011). Heavy metals and living systems: An overview. Indian J. Pharmacol., 43(3), 246–253. DOI: 10.4103/0253-7613.81505
  190. Muhammad, S., Bertrand, P., Camille, D., Muhammad, N., Muhammad, A., Eric, P. (2014). Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants. Rev. Environ. Contam. Toxicol. 14, 232, 1-44. DOI: 10.1007/978-3-319-06746-9_1
  191. Kano, N., Zhang, S. (2018). Adsorption of Heavy Metals on Layered Double Hydroxides (LDHs) Intercalated with Chelating Agents. Intech Open. DOI: 10.5772/intechopen.80865
  192. Perez, M.R., Pavlovic, I., Barriga, C., Cornejo, J., Hermosin, M.C., Ulibarri, M.A. (2006). Uptake of Cu2+, Cd2+ and Pb2+ on Zn-Al layered double hydroxide intercalated with EDTA. Applied Clay Science, 32(3), 245-251. DOI: 10.1016/j.clay.2006.01.008
  193. Gasser, M.S., Aly, H.F. (2009). Kinetic and adsorption mechanism of Cu(II) and Pb(II) on prepared nanoparticle layered double hydroxide intercalated with EDTA. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 6(1-3), 167-173. DOI: 10.1016/j.colsurfa.2008.11.047
  194. Zahir, M.H., Irshad, K., Rahman, M.M., Shaikh, M.N., Rahman, M.M. (2021). Efficient Capture of Heavy Metal Ions and Arsenic with a CaY-Carbonate Layered Double-Hydroxide Nanosheet. ACS Omega, 6(35), 22909-22921. DOI: 10.1021/acsomega.1c03294
  195. Buxbaum, G., Pfaff, G. (2005). Cadmium Pigments, Industrial Inorganic Pigments. Hoboken, New Jersey, USA: Wiley-VCH
  196. Shan, R., Yan, L., Yang, K., Hao, Y., Du, B. (2015). Adsorption of Cd(II) by Mg–Al–CO3 and magnetic Fe3O4/Mg–Al–CO3-layered double hydroxides: kinetic, isothermal, thermo dynamic and mechanistic studies. Hazard. Mater., 299, 42–49. DOI: 10.1016/j.jhazmat.2015.06.003
  197. Zhang, F., Song, Y., Song, S., Zhang, R., Hou, W. (2015). Synthesis of magnetite–graphene oxide-layered double hydroxide composites and applications for the removal of Pb(II) and 2, 4-dichlorophenoxyacetic acid from aqueous solutions. ACS Appl. Mater. Interfaces, 7, 7251–7263. DOI: 10.1021/acsami.5b00433
  198. Lijiao, M., Qing, W., Saiful, M.I, Yingchun, L., Shulan, M., Mercouri, G.K. (2016). Highly Selective and Efficient Removal of Heavy Metals by Layered Double Hydroxide Intercalated with the MoS4(2-) Ion. J. Am. Chem. Soc. 138(8), 2858-2866. DOI: 10.1021/jacs.6b00110
  199. Jawad, A., Liao, Z., Zhou, Z., Khan, A., Wang, T., Ifthikar, J., Shahzad, A., Chen, Z., Chen, Z. (2017). Fe-MoS4: An Effective and Stable LDH-Based Adsorbent for Selective Removal of Heavy Metals. ACS Appl. Mater. Interfaces. 30, 9(34), 28451-28463. doi: 10.1021/acsami.7b07208
  200. Asiabi, H., Yamini, Y., Shamsayei, M., Molaei, K., Shamsipur, M. (2018). Functionalized layered double hydroxide with nitrogen and sulfur co-decorated carbon dots for highly selective and efficient removal of soft Hg2+ and Ag+ ions. J. Hazard. Mater. 357, 217-225. DOI: 10.1016/j.jhazmat.2018.05.055
  201. Yang, L., Xie, L., Chu, M., Wang, H., Yuan, M., Yu, Z., Wang, C., Yao, H., Islam, S.M., Shi, K., Yan, D., Ma, S., Kanatzidis, M.G. (2022) Mo3S132-Intercalated Layered Double Hydroxide: Highly Selective Removal of Heavy Metals and Simultaneous Reduction of Ag+ Ions to Metallic Ag0 Ribbons. Angew. Chem. Int. Ed. Engl., 61(1), e202112511. DOI: 10.1002/anie.202112511
  202. Ekubatsion, L.H., Thriveni, T., Ahn, J.W. (2021). Removal of Cd2+ and Pb2+ from Wastewater through Sequent Addition of KR-Slag, Ca(OH)2 Derived from Eggshells and CO2 Gas. ACS Omega, 6(42), 27600-27609. DOI: 10.1021/acsomega.1c00946
  203. Liang, X., Hou, W., Xu, Y., Sun, G., Wang, L., Sun, Y., Qin, X. (2010). Sorption of lead ion by layered double hydroxide intercalated with diethylenetriaminepentaacetic acid. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 366(1), 50-57. DOI: 10.1016/j.colsurfa.2010.05.012

Last update:

No citation recorded.

Last update:

No citation recorded.