skip to main content

Catalytic Decomposition of Methane to Hydrogen over Al2O3 Supported Mono- and Bimetallic Catalysts

1Institute of Combustion Problems, Bogenbay batyra, 172 A, 050012 Almaty , Kazakhstan

2Al-Farabi Kazakh National University, Al- Farabi ave. 71, 050040 Almaty, Kazakhstan

3L.V. Pysarzhevskii Institute of Physical Chemistry, National Academy of Sciences of Ukraine, Prospekt Nauki, 31, 03028, Ukraine

Received: 27 Aug 2021; Revised: 5 Oct 2021; Accepted: 7 Oct 2021; Available online: 9 Oct 2021; Published: 30 Mar 2022.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2021 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image

This article discusses the decomposition of methane in the temperature range 550–800 °C on low-percentage   monometallic (Ni/g-Al2O3, Co/g-Al2O3) and bimetallic (Ni-Co/g-Al2O3) catalysts. It is shown that the bimetallic catalyst is more active in the decomposition of methane to hydrogen than monometallic ones. At a reaction temperature of 600 °C, the highest methane conversion is 81%, and the highest hydrogen yield of 51% is formed on Ni-Co/g-Al2O3. A complex of physicochemical methods (Scanning Electron Microscope (SEM), X-ray Diffraction (XRD), Temperature Programmed Reduction (TPR-H2), etc.) established that the addition of cobalt oxide to the composition of Ni/g-Al2O3 leads to the formation of surface bimetallic Ni-Co alloys, while the dispersion of particles increases and the reducibility of the catalyst is facilitated, which provides an increase in the concentration of metal particles - active centers, which can be the reason for an increase in the catalytic properties of a bimetallic catalyst in comparison with monometallic ones. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License  (


Fulltext View|Download
Keywords: methane decomposition; Al2O3 catalyst; hydrogen; bimetallic catalyst; Ni/g-Al2O3; Co/g-Al2O3; Ni-Co/g-Al2O3
Funding: Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan under contract Grant № AP08855564

Article Metrics:

  1. (Accessed on March 03, 2018)
  2. Soloviev, S.O. (2012). Oxidative Reforming of Methane on Structured Ni–Al2O3/Cordierite Catalysts. Catalysis in Industry, 4, 1–10. DOI: 10.1134/S2070050412010114
  3. Soloviev, S.O., Gubareni. I.V., Orlyk, S.M. (2018). Oxidative Reforming of Methane on Structured Nickel–Alumina Catalysts: a Review. Theoretical and Experimental Chemistry, 54, 293–315. DOI: 10.1007/s11237-018-9575-5
  4. Karaismailoglu, M., Figen, H.E., Baykara, S.Z. (2019). Hydrogen production by catalytic methane decomposition over yttria doped nickel based catalysts. International Journal Hydrogen Energy, 44, 9922–9929. DOI: 10.1016/j.ijhydene.2018.12.214
  5. Rastegarpanah, A., Rezaei, M., Meshkani, F., Zhang, K., Zhao, X., Pei, W., Liu, Y., Deng, J., Arandiyan, H., Dai, H. (2019). Influence of group VIB metals on activity of the Ni/MgO catalysts for methane decomposition. Applied Catalysis B, 248, 515–525. DOI: 10.1016/j.apcatb.2019.01.067
  6. De Roseno, K.T., Schmal, M., Brackmann, R.M., Alves, R.G. (2019). Partial oxidation of methane on neodymium and lanthanium chromate based perovskites for hydrogen production. International Journal Hydrogen Energy, 44, 8166–8177. DOI: 10.1016/j.ijhydene.2019.02.039
  7. Dossumov, K., Ergazieva, G.E., Ermagambet. B.T., Telbayeva, M.M., Mambetova, M.M., Myltykbayeva, L.K., Kassenova, Z.M. (2020). Role of ceria in several energy‑related catalytic transformations. Chemical Papers, 74, 373–388. DOI: 10.1007/s11696-019-00921-8
  8. Stiegel, G.J., Ramezan, M. (2006). Hydrogen from coal gasification: An economical pathway to a sustainable energy future. International Journal Coal Geol, 65, 173–190. DOI: 10.1016/j.coal.2005.05.002
  9. Grigoriev, S.A., Porembsky, V.I., Fateev, V.N. (2006). Pure hydrogen production by PEM electrolysis for hydrogen energy. International Journal Hydrogen Energy, 31, 171–175. DOI: 10.1016/j.ijhydene.2005.04.038
  10. Zeng, K., Zhang, D. (2010). Recent progress in alkaline water electrolysis for hydrogen production and applicationsю. Progress in Energy and Combustion Science, 36, 307–326. DOI: 10.1016/j.pecs.2009.11.002
  11. Shahzad, K., Tahir, M.B., Sagir, M. (2019). Engineering the performance of heterogeneous WO3/fullerene@Ni3B/Ni(OH)2 Photocatalysts for Hydrogen Generation. International Journal Hydrogen Energy, 44, 21738–21745. DOI: 10.1016/j.ijhydene.2019.06.148
  12. Tahir, M.B., Riaz, K.N., Asiri, A.M. (2019). Boosting the performance of visible light‐driven WO3/g‐C3N4 anchored with BiVO4 nanoparticles for photocatalytic hydrogen evolution. International Journal Energy Research, 43, 5747–5758. DOI: 10.1002/er.4673
  13. Shabani, S., Delavar, M.A., Azmi, M. (2013). Investigation of biomass gasification hydrogen and electricity co-production with carbon dioxide capture and storage. International Journal Hydrogen Energy, 38, 3630–3639. DOI: 10.1016/j.ijhydene.2013.01.066
  14. Holmen, A. (2209). Direct conversion of methane to fuels and chemicals. Catalysis Today, 142(1–2), 2–8. DOI: 10.1016/j.cattod.2009.01.004
  15. Dossumov, K., Ergazieva, G.Е., Ermagambet, B.T., Myltykbaeva, L.K., Telbaeva, M.M., Mironenko, A.V., Mambetova, M.M., Kasenova, G. (2020). Morphology and Catalytic Properties of Cobalt-Containing Catalysts Synthesized by Different Means. Russian Journal Physic Chemistry A, 94, 880–882. DOI: 10.1134/S0036024420040020
  16. Dossumov, K., Yergazyieva, G.Y., Myltykbayeva, L.K., Suyunbayev, U., Asanov, N.A., Gyulmaliev, A.M. (2015). Oxidation of Methane over Polyoxide Catalysts. Coke Chemistry, 58(5), 178–183. DOI: 10.3103/S1068364X15050026
  17. Mondal, K.C., Chandran, S.R. (2014). Evaluation of the economic impact of hydrogen production by methane decomposition with steam reforming of methane process. International Journal Hydrogen Energy, 39, 9670–9674. DOI: 10.1016/j.ijhydene.2014.04.087
  18. Keipi, T., Tolvanen, H., Konttinen, J. (2018). Economic analysis of hydrogen production by methane thermal decomposition: Comparison to competing technologies. Energy Convers Manage, 159, 264–273. DOI: 10.1016/j.enconman.2017.12.063
  19. Chen, J., Ou, Z., Chen, H., Song, S., Wang, K., Wang, Y. (2021). Recent developments of nanocarbon based supports for PEMFCs electrocatalysts. Chinese Journal of Catalysis, 42(8), 1297–1326. DOI: 10.1016/S1872-2067(20)63736-6
  20. Hazzim, F., Abbas, U.P., Ashik, S.A., Mohammed, W.M., Ashri, W.D. (2021). Impact of reactor materials on methane decomposition for hydrogen production. Chemical Engineering Research and Design, 174, 127–136. DOI: 10.1016/j.cherd.2021.08.005
  21. Tahir, M.B., Nabi, G., Khalid, N.R., Rafique, M. (2018). Role of europium on WO3performance under visible-lightfor photocatalytic activity. Ceramics International, 44, 5705–5709. DOI: 10.1016/j.ceramint.2017.12.223
  22. Khalid, N.R., Liaqat, M., Tahir, M.B., Nabi, G., Iqbal, T., Niaz, N.A. (2018). The role of graphene and europium on TiO2 performance for photocatalytic hydrogen evolution. Ceramics International, 44, 546. DOI: 10.1016/j.ceramint.2017.09.209
  23. Maeda, K., Domen, K. (2010). Photocatalytic Water Splitting: Recent Progress and Future Challenges. Journal Physical Chemistry Letters, 1, 2655–2661. DOI: 10.1021/jz1007966
  24. Qian, J.X., Chen, T.W., Enakonda L.R., Liu, D.B., Mignani, G., Basset, J.M., Zhou, L. (2020). Methane decomposition to produce COx-free hydrogen and nano-carbon over metal catalysts: A review. International Journal of Hydrogen Energy, 45, 7981–8001. DOI: 10.1016/j.ijhydene.2020.01.052
  25. Karimi, S., Bibak, F., Meshkani, F., Rastegarpanah, A., Deng, J., Liu, Y., Dai, H. (2021). Promotional roles of second metals in catalyzing methane decomposition over the Ni-based catalysts for hydrogen production: A critical review. International Journal Hydrogen Energy, 46, 20435–20480. DOI: 10.1016/j.ijhydene.2021.03.160
  26. Torres, D., Pinilla, J.L., Suelves, I. (2020). Cobalt doping of a-Fe/Al2O3 catalysts for the production of hydrogen and high-quality carbon nanotubes by thermal decomposition of methane. International Journal Hydrogen Energy, 45(38), 19313–19323. DOI: 10.1016/j.ijhydene.2020.05.104
  27. Silva, R.R., Oliveira, H.A., Guarino, A.C., Toledo, B.B., Moura, M.B., Oliveira, B.T., Passos, F.B. (2016). Effect of support on methane decomposition for hydrogen production over cobalt catalysts. International Journal Hydrogen Energy, 41(16), 6763–6772. DOI: 10.1016/j.ijhydene.2016.02.101
  28. Fan, Z., Weng, W., Zhou, J., Gu, D., Xiao, W. (2021). Catalytic decomposition of methane to produce hydrogen: A review. Journal Energy Chemistry, 58, 415–430. DOI: 10.1016/j.jechem.2020.10.049
  29. Liu, F., Xuan, G., Ai, L., Liu, Q., Yang, Li. (2021). Key factors that affect catalytic activity of activated carbon-based catalyst in chemical looping methane decomposition for H2 production. Fuel Process Technol, 215, 106745. DOI: 10.1016/j.fuproc.2021.106745
  30. Wang, J., Yang, Z., Yang, K., Peng, S. (2021). Kinetics of oxygen reaction in porous La0.6Sr0.4Co0.2Fe0.8O3–δ-Ce0.8Gd0.2O1.9 composite electrodes for solid oxide cells. International Journal Hydrogen Energy, 46(50), 25608–25619. DOI: 10.1016/j.ijhydene.2021.05.071
  31. Muhammad, A.F.S., Ali, A., Saidur, R., Masiran, N., Salam, A., Abdullah, B. (2018). Recent advances in cleaner hydrogen productions via thermo-catalytic decomposition of methane: Admixture with hydrocarbon. International Journal Hydrogen Energy, 43, 18713–18734. DOI: 10.1016/j.ijhydene.2018.08.091
  32. Makvandi, S., Alavi, S.M. (2011). COx Free Hydrogen Production by Catalytic Decomposition of Methane Over Porous Ni/Al2O3 Catalysts. Iranian Journal of Chemical Engineering, 8(4), 24–33
  33. Chai, S.P., Seah, C.M., Mohamed, A.R. (2011). A parametric study of methane decomposition into carbon nanotubes over 8Co-2Mo/Al2O3 catalyst. Journal of Natural Gas Chemistry, 20, 84–89. DOI: 10.1016/S1003-9953(10)60151-X
  34. Yergaziyeva, G.Y., Dossumov, K., Mambetova, M.M., Strizhak, P.Y., Kurokawa, H., Baizhomartov, B. (2021). Effect of Ni, La, and Ce Oxides on a Cu/Al2O3 Catalyst with Low Copper Loading for Ethanol Non-oxidative Dehydrogenation. Chemical Engineering and Technology, 44(10), 1890–1899. DOI: 10.1002/ceat.202100112
  35. Dosumov, K., Ergazieva, G.E., Churina, D.Kh., Tel'Baeva, M.M. (2014). Cerium-containing catalysts for converting ethanol into ethylene. Russian Journal of Physical Chemistry A, 88(10), 1806–1808. DOI: 10.1134/S0036024414100094
  36. Ergazieva, G.E., Telbayeva, M.M., Popova, A.N., Ismagilov, Z.R., Dossumov, K., Myltykbayeva, L.K., Dodonov, V.G., Sozinov, S.A., Niyazbayeva, A.I. (2021). Effect of preparation method on the activity of bimetallic Ni-Co/Al2O3 catalysts for dry reforming of methane. Chemical Papers, 75, 2765–2774. DOI: 10.1007/s11696-021-01516-y
  37. Wan, C., Shi, Z., Huang, M., Pan, J., Luo, R., Li, D., Jiang, L. (2020). Influence of alloying on the catalytic performance of NieAl catalyst prepared from hydrotalcite-like compounds for methane decomposition. International Journal Hydrogen Energy, 46(5), 3833–3846. DOI: 10.1016/j.ijhydene.2020.10.186
  38. Dossumov, K., Yergazieva, G.Y., Myltykbaieva, L.K., Asanov, N.A.(2016). Effect of Co, Ce, and La oxides as modifying additives on the activity of an NiO/-Al2O3 Catalyst in the oxidation of methane to give Synthesis Gas. Theoretical and Experimental Chemistry, 52, 119–122. DOI: 10.1007/s11237-016-9459-5
  39. Lisboa, J.S., Terra, L.E., Silva, P.R., Saitovitch, H., Passos, F.B. (2011). Investigation of Ni/Ce–ZrO2 catalysts in the autothermal reforming of methane. Fuel Process Technology, 92:2075–2082. DOI: 10.1016/j.fuproc.2011.06.011
  40. Montoya, J.A., Romero-Pascual, E., Gimon, C., Del Angel, P., Monzón, A. (2000). Methane reforming with CO2 over Ni/ZrO2–CeO2 catalysts prepared by sol–gel. Catalysis Today, 63, 71–85. DOI: 10.1016/S0920-5861(00)00447-8
  41. Xu, J.K., Zhou, W., Li, Z.J., Wang, J.H., Ma, J.X. (2009). Biogas reforming for hydrogen production over nickel and cobalt bimetallic catalysts. International Journal Hydrogen Energy, 34, 6646–6654. DOI: 10.1016/j.ijhydene.2009.06.038
  42. Reynoso, A.J., Ayastuy, J.L., Iriarte-Velasco, U., Gutiérrez-Ortiz, M.A. (2018). Cobalt aluminate spinel-derived catalysts for glycerol aqueous phase reforming. Applied Catalysis B, 239, 86–101. DOI: 10.1016/j.apcatb.2018.08.001
  43. Karabanov, A.V., Shmanovskaya, A.L., Kutovoy, A.A., Aleksenko, K.N., Vasilenko, A.A., Ivanenko, S.S., Yagmurov, V.Y., Larina, M.V. (2019). Effect of alumina modification on a cobalt Fischer-Tropsch catalyst promoted with manganese oxide. Engineering Bulletin of the Don, 1, 25–29. URL: (in Russian)
  44. Ay, H., Üner, D. (2015). Dry reforming of methane over CeO2 supported Ni, Co and Ni-Co catalysts. Applied Catalysis B, 179, 128–138. DOI: 10.1016/j.apcatb.2015.05.013
  45. Klissurski, D.G., Uzunova, E.L. (1991). Synthesis of Nickel Cobaltite Spinel from Coprecipitated Nickel-Cobalt Hydroxide Carbonate. Chemical Materials, 3, 1060–1063. DOI: 10.1021/cm00018a021
  46. Fang, A., Zhejiang, J. (2020). NiCo2O4 nanoparticles: an efficient and magnetic catalyst for Knoevenagel condensation. University-Science A (Applied Physics & Engineering), 21(1), 74–84. DOI: 10.1631/jzus.A1900535
  47. Ashokkumar, S., Ganesan, V., Ramaswamy, K.K., Balasubramanian, V. (2018). Bimetallic Co–Ni/TiO2 catalysts for selective hydrogenation of cinnamaldehyde. Research on Chemical Intermediates, 44, 6703–6720. DOI: 10.1007/s11164-018-3517-7
  48. Li, L., Lu, P., Yao, Y., Ji, W. (2021). Silica-encapsulated bimetallic Co–Ni nanoparticles as novel catalysts for partial oxidation of methane to syngas. Catalysis Communications, 26, 72–77. DOI: 10.1016/j.catcom.2012.05.005
  49. Tezel, E., Figen, H.E., Baykara, S.Z. (2019). Hydrogen production by methane decomposition using bimetallic NieFe catalysts. International Journal Hydrogen Energy, 44(20), 9930–9940. DOI: 10.1016/j.ijhydene.2018.12.151

Last update:

No citation recorded.

Last update:

No citation recorded.