skip to main content

Size Selectivity of Anionic and Cationic Dyes Using LDH Modified Adsorbent with Low-Cost Rambutan Peel to Hydrochar

1Magister Programme Graduate School of Mathematics and Natural Sciences, Sriwijaya University, Jl. Padang Selasa No. 524 Ilir Barat 1, Palembang, South Sumatra, Indonesia

2Research Center of Inorganic Materials and Coordination Complexes, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jl. Palembang Prabumulih Km.32 Ogan Ilir 30662, Indonesia

3Graduate School of Faculty Mathematics and Natural Sciences, Sriwijaya University, Jl. Padang Selasa No. 524 Ilir Barat 1, Palembang, South Sumatra, Indonesia

4 Departement of Environmental Engineering, Faculty of Mathematics and Natural Sciences, Insitut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Hui, Jati Agung, Lampung 35365, Indonesia

View all affiliations
Received: 20 Aug 2021; Revised: 14 Sep 2021; Accepted: 14 Sep 2021; Available online: 20 Sep 2021; Published: 20 Dec 2021.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2021 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image

Modification of the layered double hydroxide of CuAl-LDHs by composite with hydrochar (HC) to form CuAl-HC LDH. Material characterization by XRD, FT-IR and SEM analysis was used to prove the success of the modification. The characterization of XRD and FT-IR spectra showed similarities to pure LDH and HC. Selectivity experiments were carried out by mixing malachite green, methylene blue, rhodamine-B, methyl orange, and methyl red to produce the most suitable methyl blue dye for CuAl-LDH, HC and CuAl-HC adsorbents. The effectiveness of CuAl-HC LDH as adsorbent on methylene blue adsorption was tested through several influences such as adsorption isotherm, thermodynamics, and adsorbent regeneration. CuAl-HC LDH adsorption isotherm data shows that the adsorption process tends to follow the Langmuir isotherm model with a maximum adsorption capacity of 175.439 mg/g with a threefold increase compared to pure LDH. The effectiveness of the adsorbent for repeated use reaches five cycles as evidenced by the maximum capacity regeneration data reaching 82.2%, 79.3%, 77.9%, 76.1%, and 75.8%. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (


Fulltext View|Download
Keywords: CuAl-LDHs; Hydrochar; Composite; Selectivity; Regeneration
Funding: Ministry of Research, Technology, and Higher Education Republic of Indonesia under contract PDUPT Professional Grant contact No. 150/SP2H/LT/DRPM/2021

Article Metrics:

  1. Munir, M., Nazar, M.F., Zafar, M.N., Zubair, M., Ashfaq, M., Hosseini-Bandegharaei, A., Khan, S.U., Ahmad, A. (2020). Effective Adsorptive Removal of Methylene Blue from Water. ACS Omega, 5(27), 16711-16721. DOI: 10.1021/acsomega.0c01613
  2. Fajarwati, F.I., Yandini, N.I., Anugrahwati, M., Setyawati, A. (2020). Adsorption Study of Methylene Blue and Methyl Orange Using Green Shell (Perna Viridis). Journal Sciences and Data Analysis, 1(1), 92–97. DOI: 10.20885/
  3. Badri, A.F., Siregar, P.M.S.B.N., Palapa, N.R., Mohadi, R., Mardiyanto, M., Lesbani, A. (2021). Mg-Al/Biochar Composite with Stable Structure for Malachite Green Adsorption from Aqueous Solutions. Bulletin of Chemical Reaction Engineering & Catalysis, 16(1), 149–160. DOI: 10.9767/bcrec.16.1.10270.149-160
  4. Pathania, D., Sharma, S., Singh, P. (2017). Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast. Arabian Journal Chemistry, 10(2017), S1445–S1451. DOI: 10.1016/j.arabjc.2013.04.021
  5. Labiebah, G., Djunaidi, M. C., Haris, A., Widodo, D. S. (2019). Removal of Methylene Blue Using Used Paper Powder Ghina. Journal of Scientific & Applied Chemistry, 22(1), 23–28. DOI: 10.14710/jksa.22.1.23-28
  6. Mohammed, M.A., Shitu, A., Ibrahim, A. (2014). Removal of methylene blue using low cost adsorbent : a review Removal of Methylene Blue Using Low Cost Adsorbent : A Review. Research Journal of Chemical Sciences, 4(1), 91–102
  7. Sharifi, H.S., Archin, S., Asadpour, G. (2018). Optimization of Process Parameters by Response Surface Methodology for Methylene Blue Removal Using Cellulose Dusts. Civil Engineering Journal, 4(3), 620–634. DOI: 10.28991/cej-0309121
  8. Singh, R., Singh, T.S., Diyo, J.O.O., Smith, J.A., Edokpayi, J.N. (2020). Evaluation of Methylene Blue Sorption onto Low-Cost Biosorbents : Equilibrium , Kinetics , and Thermodynamics. Hindawi Journal of Chemistry, 2020, 8318049. DOI: 10.1155/2020/8318049
  9. Kuang, Y., Zhang, X., Zhou, S. (2020). Adsorption of Methylene Blue in Water onto Activated Carbon by Surfactant Modification. Water, 12(2), 587. DOI: 10.3390/w12020587
  10. Hossain, S., Chun, D. (2020). ZnO decorated polydimethylsiloxane sponges as photocatalysts for effective removal of methylene blue dye. Materials Chemistry and Physics, 255 (July), 123589. DOI: 10.1016/j.matchemphys.2020.123589
  11. Abdellaoui, K., Pavlovic, I., Barriga, C. (2019). Nanohybrid Layered Double Hydroxides Used to Remove Several Dyes from Water. Chemengineering Artic, 3(41), 1–16. DOI: .10.3390/chemengineering3020041
  12. Araújo, C.S.T., Almeida, I.L.S., Rezende, H.C., Marcionilio, S.M.L.O., Léon, J.J.L., De Matos, T.N. (2017). Elucidation of mechanism involved in adsorption of Pb(II) onto lobeira fruit (Solanum lycocarpum) using Langmuir, Freundlich and Temkin isotherms. Microchemical Journal, 6(1), 30618–30623. DOI: 10.1016/j.microc.2017.11.009
  13. Starukh, G., Rozovik, O., Oranska, O. (2016). Organo/Zn-Al LDH Nanocomposites for Cationic Dye Removal from Aqueous Media. Nanoscale Research Letters, 11(228), 1–10. DOI: 10.1186/s11671-016-1402-0
  14. Lesbani, A., Palapa, N.R., Sayeri, R.J., Taher, T., Hidayati, N. (2021). High Reusability of NiAl LDH/Biochar Composite in the Removal Methylene Blue from Aqueous Solution. Indonesian Journal of Chemistry, 21(2), 421–434. DOI: 10.22146/ijc.56955
  15. Kundu, S., Naskar, M.K. (2021). Carbon-layered double hydroxide nanocomposite for efficient removal of inorganic and organic based water contaminants – unravelling the adsorption mechanism. Materials Advances, 2, 3600–3612. DOI: 10.1039/d1ma00064k
  16. Murcia-salvador, A., Pellicer, J.A., Fortea, I., Vicente, M.G. (2019). Adsorption of Direct Blue 78 Using Chitosan and Cyclodextrins as Adsorbents. Polymers (Basel), 11(6), 1003. DOI: 10.3390/polym11061003
  17. Tamas, A., Cozma, L., Cocheci, L., Lupa, L., Rusu, G. (2020). Adsorption of Orange II Onto Zn/Al–Layered Double Hydroxide Prepared From Zinc Ash. Frontiers in Chemistry, 8, 573535. DOI: 10.3389/fchem.2020.573535
  18. Starukh, H., Levytska, S. (2019). The simultaneous anionic and cationic dyes removal with Zn–Al layered double hydroxides. Applied Clay Science, 180, 105183. DOI: 10.1016/j.clay.2019.105183
  19. Khuluk, R.H., Rahmat, A., Buhani., Suharso. (2019). Removal of Methylene Blue by Adsorption onto Activated Carbon From Coconut Shell (Cocous Nucifera L .). Indonesian Journal of Science and Technology, 4(2), 229–240. DOI: 10.17509/ijost.v4i2.18179
  20. Palapa, N.R., Juleanti, N., Mohadi, R., Taher, T., Rachmat, A., Lesbani, A. (2020). Copper Aluminum Layered Double Hydroxide Modified by Biochar and its Application as an Adsorbent for Procion Red. Journal of Water and Environment Technology, 18(6), 359-371. DOI: 10.2965/jwet.20-059
  21. Li, S., Dong, L., Wei, Z., Sheng, G., Du, K., Hu, B. (2020). Adsorption and mechanistic study of the invasive plant-derived biochar functionalized with CaAl-LDH for Eu(III) in water. Journal Environmental Sciences (China), 96(1), 127–137. DOI: 10.1016/j.jes.2020.05.001
  22. Normah, N., Palapa, N.R., Taher, T., Mohadi, R., Utami, H.P., Lesbani, A. (2021). The Ability of Composite Ni/Al-carbon based Material Toward Readsorption of Iron (II) in Aqueous Solution. Science & Technology Indonesia, 6(3), 156–165. DOI: 10.26554/sti.2021.6.3.156-165
  23. Stawiński, W., Węgrzyn, A., Mordarski, G., Skiba, M., Freitas, O., Figueiredo, S. (2018). Sustainable adsorbents formed from by-product of acid activation of vermiculite and leached-vermiculite-LDH hybrids for removal of industrial dyes and metal cations. Applied Clay Science, 161, 6–14. DOI: 10.1016/j.clay.2018.04.007
  24. Hu, H. (2020). NiFe-LDH nanosheet/carbon fiber nanocomposite with enhanced anionic dye adsorption performance. Applied Surface Science, 511, 145570. DOI: 10.1016/j.apsusc.2020.145570
  25. Xue, L., Gao, B., Wan, Y., Fang, J., Wang, S., Li, Y., Munoz-Carpena, R., Yang, R. (2016). High efficiency and selectivity of MgFe-LDH modified wheat-straw biochar in the removal of nitrate from aqueous solutions. Journal Taiwan Institute of Chemical Engineers. 63, 312–317. DOI: 10.1016/j.jtice.2016.03.021
  26. Palapa, N.R., Taher, T., Wijaya, A., Lesbani, A. (2021). Modification of Cu/Cr Layered Double Hydroxide by Keggin Type Polyoxometalate as Adsorbent of Malachite Green from Aqueous Solution. Science & Technology Indonesia, 6(3), 209–217. DOI: 10.26554/sti.2021.6.3.209-217
  27. Palapa, N.R., Taher, T., Rahayu, B.R., Mohadi, R., Rachmat, A., Lesbani, A. (2020). CuAl LDH/Rice husk biochar composite for enhanced adsorptive removal of cationic dye from aqueous solution. Bulletin of Chemical Reaction Engineering & Catalysis, 15(2), 525–537. DOI: 10.9767/bcrec.15.2.7828.525-537
  28. Vithanage, M., Ashiq, A., Ramanayaka, S., Bhatnagar, A. (2020). Implications of layered double hydroxides assembled biochar composite in adsorptive removal of contaminants: Current status and future perspectives. Science of the Total Environmental, 737(2020), 139718. DOI: 10.1016/j.scitotenv.2020.139718
  29. Eskandari, S., Mohammadi, A., Sandberg, M., Eckstein, R.L., Hedberg, K., Granström, K. (2019). Hydrochar-amended substrates for production of containerized pine tree seedlings under different fertilization regimes. Agronomy, 9(7), 350. DOI: 10.3390/agronomy9070350
  30. Akarsu, K., Duman, G., Yilmazer, A., Keskin, T., Azbar, N., Yanik, J. (2019). Sustainable valorization of food wastes into solid fuel by hydrothermal carbonization. Bioresoure Technology, 292, 121959. DOI: 10.1016/j.biortech.2019.121959
  31. Zhang, T., Zhao, B., Chen, Q., Peng, X., Yang, D., Qiu, F. (2019). Layered double hydroxide functionalized biomass carbon fiber for highly efficient and recyclable fluoride adsorption. Applied Biological Chemistry, 62(1), 1–7. DOI: 10.1186/s13765-019-0410-z
  32. Szabados, M., Adam, A.A., Traj, P., Murath, S., Baan, K., Belteky, P., Konya, Z., Kukovecz, A., Sipos, P., Palinko, A. (2020). Mechanochemical and wet chemical syntheses of CaIn-layered double hydroxide and its performance in a transesterification reaction compared to those of other Ca2M(III) hydrocalumites (M: Al, Sc, V, Cr, Fe, Ga) and Mg(II)-, Ni(II)-, Co(II)- or Zn(II)-based hydrotalcites. Journal of Catalysis, 391, 282–297. DOI: 10.1016/j.jcat.2020.07.038
  33. Gu, Z., Huang, Y., Wang, Y., Yuan, N., Ding, J. (2019). An aluminum silicate modified Ni-Al LDHs film to improve the corrosion resistance of AZ31 Mg alloy. Materials Letters, 252, 304–307. DOI: 10.1016/j.matlet.2019.06.010
  34. Chen, X., Lin, Q., He, R., Zhao, X., Li, G. (2017). Hydrochar production from watermelon peel by hydrothermal carbonization. Bioresoure Technology, 241, 236–243. DOI: 10.1016/j.biortech.2017.04.012
  35. Normah, N., Palapa, N.R., Taher, T., Mohadi, R., Arsyad, F.S., Priambodo, A., Lesbani, A. (2021). Competitive Removal of Cationic Dye Using NiAl-LDH Modified with Hydrochar. Ecological Engineering & Enviromental Technology, 22(4), 124–135. DOI: 10.12912/27197050/138120
  36. Firdaus, M.L., Krisnanto, N., Alwi, W., Muhammad, R., Allan, M. (2017). Adsorption of Textile Dye by Activated Carbon Made from Rice Straw and Palm Oil Midrib. Aceh International Journal of Science and Technology, 6(1), 1–7. DOI: 10.13170/aijst.6.1.5502
  37. Sepehr, M.N., Al-Musawi, T.J., Ghahramani, E., Kazemian, H., Zarrabi, M. (2017). Adsorption Performance of Magnesium/Aluminum Layered Double Hydroxide Nanoparticles for Metronidazole From Aqueous Solution. Arabian Journal Chemistry, 10(5), 611–623. DOI: 10.1016/j.arabjc.2016.07.003
  38. Pan, X., Zhang, M., Liu, H., Ouyang, S., Ding, N., Zhang, P. (2020). Adsorption behavior and mechanism of acid orange 7 and methylene blue on self-assembled three-dimensional MgAl layered double hydroxide : Experimental and DFT investigation. Applied Surface Science, 522, 146370. DOI: 10.1016/j.apsusc.2020.146370
  39. Rathee, G., Awasthi, A., Sood, D., Tomar, R., Tomar, V., Chandra, R. (2019). A new biocompatible ternary Layered Double Hydroxide Adsorbent for ultrafast removal of anionic organic dyes. Scientific Reports, 9(1), 16225. DOI: 10.1038/s41598-019-52849-4
  40. Shi, Z., Wang, Y., Sun, S., Zhang, C., Wang, H. (2020). Removal of methylene blue from aqueous solution using Mg-Fe, Zn-Fe, Mn-Fe layered double hydroxide. Water Science and Technology, 81(12), 2522–2532. DOI: 10.2166/wst.2020.313
  41. Pathania, D., Sharma, S., Singh, P. (2013). Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast. Arabian Journal Chemistry, 10, S1445-S1451. DOI: 10.1016/j.arabjc.2013.04.021
  42. Idan, I.J., Abdullah, L.C., Choong, T.S.Y., Jamil, S.N.A.B.M. (2018). Equilibrium, kinetics and thermodynamic adsorption studies of acid dyes on adsorbent developed from kenaf core fiber. Adsorption Science & Technology, 36(1–2), 694–712. DOI: 10.1177/0263617417715532
  43. Jivrakh, K.B., Kaki, S.B., Sharma, R., Mendu, S.S., Emadabathuni, A.K. (2020). Comparison of ammonia sorption properties and thermodynamic performance of adsorption‐based thermal energy storage system for MnCl2, CaCl2, and their composites. Energy Storage, 2(4), e138. DOI: 10.1002/est2.138
  44. Juleanti, N., Palapa, N.R., Taher, T., Hidayati, N., Putri, B.I., Lesbani, A. (2021). The Capability of Biochar-Based CaAl and MgAl Composite Materials as Adsorbent for Removal Cr (VI) in Aqueous Solution. Science & Technology Indonesia, 6(3), 156–165. DOI: 10.26554/sti.2021.6.3.196-203
  45. Raghav, S., Kumar, D. (2018). Adsorption Equilibrium, Kinetics, and Thermodynamic Studies of Fluoride Adsorbed by Tetrametallic Oxide Adsorbent. Journal Chemical &. Engineering Data, 63(5), 1682–1697. DOI: 10.1021/acs.jced.8b00024
  46. Chung, H.K., Kim, W.H., Park, J., Cho, J., Jeong, T.Y., Park, P.K. (2015). Application of Langmuir and Freundlich isotherms to predict adsorbate removal efficiency or required amount of adsorbent. Journal of Industrial and Engineering Chemistry, 28, 241–246. DOI: 10.1016/j.jiec.2015.02.021
  47. Noreen, S., Khalid, U., Ibrahim, M., Javed, T., Ghani, A., Naz, S., Iqbal, M. (2020). ZnO, MgO and FeO adsorption efficiencies for direct sky Blue dye: Equilibrium, kinetics and thermodynamics studies. Journal Material. Research Technology, 9(3), 5881–5893. DOI: 10.1016/j.jmrt.2020.03.115
  48. Batool, F., Akbar, J., Iqbal, S., Noreen, S., Bukhari, S.N.A. (2018). Study of Isothermal, Kinetic, and Thermodynamic Parameters for Adsorption of Cadmium: An Overview of Linear and Nonlinear Approach and Error Analysis. Bioinorganic Chemistry and Applications, 2018, 3463724. DOI: 10.1155/2018/3463724
  49. Lakhlifi, A., Dahoo, P.R., Picaud, S., Mousis, O. (2015). A simple van’t Hoff law for calculating Langmuir constants in clathrate hydrates. Chemical Physics, 448, 53–60. DOI: 10.1016/j.chemphys.2015.01.004
  50. Ali, I., Asim, M., Khan, T.A. (2012). Low cost adsorbents for the removal of organic pollutants from wastewater. Journal of Environmental Management, 113, 170–183. DOI: 10.1016/j.jenvman.2012.08.028
  51. Chang, Y., Lai, J., Lee, D. (2016). Thermodynamic parameters for adsorption equilibrium of heavy metals and dyes from wastewaters: research updated. Bioresource Technology, 6(16), 31392–31399. DOI: 10.1016/j.biortech.2016.09.125

Last update:

No citation recorded.

Last update:

No citation recorded.