The Impact of Hydrogen Peroxide as An Oxidant for Solvent-free Liquid Phase Oxidation of Benzyl Alcohol using Au-Pd Supported Carbon and Titanium Catalysts

*Sarhan Sanaa Tareq  -  1Catalysis Science and Technology Research Centre, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia, Iraq
Mohd. Izham Saiman  -  Catalysis Science and Technology Research Centre, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
Taufiq-Yap Yun Hin  -  Catalysis Science and Technology Research Centre, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
Abdul Halim Abdullah  -  Catalysis Science and Technology Research Centre, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
Umer Rashid  -  Institute of Advanced Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
Received: 8 May 2017; Revised: 22 Feb 2018; Accepted: 6 Mar 2018; Published: 1 Aug 2018; Available online: 11 Jun 2018.
Open Access Copyright (c) 2018 Bulletin of Chemical Reaction Engineering & Catalysis
License URL:

Citation Format:
Cover Image

The solvent free oxidation of benzyl alcohol was conducted employing Au and Pd supported catalysts, while utilizing hydrogen peroxide 35% (H2O2) as the oxidant, H2O2 is  very cheap, mild, and an environment friendly reagent, which produced water as the only by-product. Various proportions of Au-Pd catalysts on carbon and titanium oxide activated as supports were synthesized through the use of sol immobilization catalyst synthesis technique. Characterization of the synthesized catalysts was performed using X-Ray Diffraction (XRD), Brunauer-Emmett-Teller (BET), Field Emission Scanning Electron Microscopy (FESEM), and Transmission Electron Microscopy (TEM). It was found that the synthesized Au-Pd/ activated carbon catalyst was  beneficial for the solvent free oxidation of benzyl alcohol after its containing high surface area measuring 871 m2g-1. Analysis of the TEM data and particle dimension revealed smaller and narrower particle size of 1 wt%. Thus, the distribution of Au-Pd/C was attained. Carbon-supported bimetallic catalysts presented a higher conversion compared to catalysts that are supported titanium oxide (TiO2) for for the oxidation reaction of benzyl alcohol. It was determined that this technique was a suitable process for catalyst synthesis with high selectivity, same distribution of the particle size and activations. Copyright © 2018 BCREC Group. All rights reserved

Received: 8th May 2017; Revised: 22nd February 2018; Accepted: 6th March 2018; Available online: 11st June 2018; Published regularly: 1st August 2018

How to Cite: Sanaa Tareq, S., Saiman, M.I., Yun Hin, T.Y., Abdullah, A.H., Rashid, U. (2018). The Impact of Hydrogen Peroxide as An Oxidant for Solvent-free Liquid Phase Oxidation of Benzyl Alcohol using Au-Pd Supported Carbon and Titanium Catalysts. Bulletin of Chemical Reaction Engineering & Catalysis, 13 (2): 373-385 (doi:10.9767/bcrec.13.2.1204.373-385)


Keywords: Benzyl Alcohol; Solvent Free Oxidation; Hydrogen Peroxide; Palladium and Gold Supported Catalyst

Article Metrics:

  1. Enache, D.I., Knight, D.W., Hutchings, G.J. (2005). Solvent-Free Oxidation of Primary Alcohols to Aldehydes Using Supported Gold Catalysts. Catalysis Letters, 103(1-2): 43-52.
  2. Vazylyev, M., Sloboda-Rozner, D., Haimov, A., Maayan, G., Neumann, R. (2005). Strategies for Oxidation Catalyzed by Polyoxometalates at the Interface of Homogeneous and Heterogeneous Catalysis. Topics in catalysis, 34(1-4): 93-99.
  3. Mori, K., Hara, T., Mizugaki, T., Ebitani, K., Kaneda, K. (2004). Hydroxyapatite-Supported Palladium Nanoclusters: A Highly Active Heterogeneous Catalyst for Selective Oxidation of Alcohols by Use of Molecular Oxygen. Journal of the American Chemical Society, 126(34): 10657-10666.
  4. Pagliaro, M., Campestrini, S., Ciriminna, R. (2005). Ru-Based Oxidation Catalysis. Chemical Society Reviews, 34(10): 837-845.
  5. Sheldon, R.A., Arends, I.W.C.E., Dijksman, A. (2000). New developments in Catalytic Alcohol Oxidations for Fine Chemicals Synthesis. Catalysis Today, 57(1): 157-166.
  6. Lee, D.G., Spitzer, U.A. (1970). Aqueous Dichromate Oxidation of Primary Alcohols. The Journal of Organic Chemistry, 35(10): 3589-3590.
  7. Griffith, W.P., Jolliffe, J.M. (1991). Ruthenium and osmium carboxylato oxo complexes as organic oxidants. Studies in Surface Science and Catalysis, 66: 395-400.
  8. Cainelli, G., Cardillo, G. (2012). Chromium oxidations in organic chemistry (Vol. 19). Springer Science & Business Media.
  9. Schank, J. (1983). Catalytic gold: Applications of Clemental Gold in Heterogeneous Catalysis. Gold Bull. 16: 103.
  10. Bond, G.C., Thompson, D.T. (1999). Catalysis by Gold. Catalysis Reviews, 41(3-4): 319-388.
  11. Haruta, M. (2003). When Gold Is Not Noble: Catalysis by Nanoparticles. The Chemical Record, 3(2): 75-87.
  12. Enache, D.I., Barker, D., Edwards, J.K., Taylor, S.H., Knight, D.W., Carley, A.F., Hutchings, G.J. (2007). Solvent-Free Oxidation of Benzyl Alcohol Using Titania-Supported Gold–Palladium Catalysts: Effect of Au–Pd Ratio on Catalytic Performance. Catalysis Today, 122(3): 407-411.
  13. Sheldon, R.A., Arends, I.W., ten Brink, G.J., Dijksman, A. (2002). Green, Catalytic Oxidations of Alcohols. Accounts of Chemical Research, 35(9): 774-781.
  14. Hutchings, G.J. (2008). Nanocrystalline Gold and Gold Palladium Alloy Catalysts for Chemical Synthesis. Chemical Communications, (10): 1148-1164.
  15. Enache, D.I., Edwards, J.K., Landon, P., Solsona-Espriu, B., Carley, A.F., Herzing, A.A., Watanabe, M., Kiely, C.J., Knight, D.W., Hutchings, G.J. (2006). Solvent-Free Oxidation of Primary Alcohols to Aldehydes Using Au-Pd/TiO2 Catalysts. Science, 311(5759):362-365.
  16. Hashmi, A.S.K., Hutchings, G.J. (2006). Gold catalysis. Angewandte Chemie International Edition, 45(47): 7896-7936.
  17. Solsona, B.E., Edwards, J.K., Landon, P., Carley, A.F., Herzing, A., Kiely, C.J., Hutchings, G.J. (2006). Direct Synthesis of Hydrogen Peroxide from H2 and O2 Using Al2O3 Supported Au-Pd Catalysts. Chemistry of Materials, 18(11): 2689-2695.
  18. Chen, M., Kumar, D., Yi, C.W., Goodman, D.W. (2005). The promotional Effect of Gold in Catalysis by Palladium-Gold. Science, 310(5746): 291-293.
  19. Bianchi, C.L., Canton, P., Dimitratos, N., Porta, F., Prati, L. (2005). Selective Oxidation of Glycerol With Oxygen Using Mono and Bimetallic Catalysts Based on Au, Pd, and Pt Metals. Catalysis Today, 102: 203-212.
  20. Pawelec, B., Venezia, A.M., La Parola, V., Cano-Serrano, E., Campos-Martin, J.M., Fierro, J.L.G. (2005). AuPd Alloy Formation in Au-Pd/Al2O3 Catalysts and Its Role on Aromatics Hydrogenation. Applied Surface Science, 242(3): 380-391.
  21. Dimitratos, N., Lopez-Sanchez, J.A., Morgan, D., Carley, A., Prati, L., Hutchings, G.J. (2007). Solvent Free liquid Phase Oxidation of Benzyl Alcohol Using Au Supported Catalysts Prepared Using a Sol Immobilization Technique. Catalysis Today, 122(3): 317-324.
  22. bin Saiman, M.I., Brett, G.L., Tiruvalam, R., Forde, M.M., Sharples, K., Thetford, A., Jenkins, R.L., Dimitratos, N., Lopez‐Sanchez, J.A., Murphy, D.M., Bethell, D. (2012). Involvement of Surface‐Bound Radicals in the Oxidation of Toluene Using Supported Au‐Pd Nanoparticles. Angewandte Chemie International Edition, 51(24): 5981-5985.
  23. Link, S., El-Sayed, M.A. (1999). Size and Temperature Dependence of the Plasmon Absorption of Colloidal Gold Nanoparticles. The Journal of Physical Chemistry B, 103(21): 4212-4217.
  24. Dimitratos, N., Lopez-Sanchez, J.A., Lennon, D., Porta, F., Prati, L., Villa, A. (2006). Effect of Particle Size on Monometallic and Bimetallic (Au, Pd)/C on the Liquid Phase Oxidation of Glycerol. Catalysis Letters, 108(3-4): 147-153.
  25. Dimitratos, N., Lopez-Sanchez, J.A., Anthonykutty, J.M., Brett, G., Carley, A.F., Tiruvalam, R.C., Herzing, A.A., Kiely, C.J., Knight, D.W., Hutchings, G.J. (2009). Oxidation of Glycerol Using Gold–Palladium Alloy-Supported Nanocrystals. Physical Chemistry Chemical Physics, 11(25): 4952-4961.
  26. Bailón-García, E., Carrasco-Marín, F., Pérez-Cadenas, A.F., Maldonado-Hódar, F.J. (2015). Development of Carbon Xerogels as Alternative Pt-Supports for the Selective Hydrogenation of Citral. Catalysis Communications, 58: 64-69.
  27. Ab Rahim, M.H. (2011). Heterogeneous Gold, Palladium and Copper Based Catalysts for Liquid Phase Oxidation of Methane. Cardiff University (United Kingdom).
  28. Lopez, N., Nørskov, J.K. (2002). Theoretical Study of the Au/TiO2 (110) Interface. Surface Science, 515(1): 175-186.
  29. Casaletto, M.P., Longo, A., Venezia, A.M., Martorana, A., Prestianni, A. (2006). Metal-Support and Preparation Influence on the Structural and Electronic Properties of Gold Catalysts. Applied Catalysis A: General, 302(2): 309-316.
  30. Fang, Y.L., Miller, J.T., Guo, N., Heck, K.N., Alvarez, P.J., Wong, M.S. (2011). Structural Analysis of Palladium-Decorated Gold Nanoparticles as Colloidal Bimetallic Catalysts. Catalysis Today, 160(1): 96-102.
  31. Dimitratos, N., Lopez-Sanchez, J.A., Morgan, D., Carley, A.F., Tiruvalam, R., Kiely, C.J., Bethell, D., Hutchings, G.J. (2009). Solvent-Free oxidation of Benzyl Alcohol Using Au–Pd Catalysts Prepared by Sol Immobilisation. Physical Chemistry Chemical Physics, 11(25): 5142-5153.
  32. Miedziak, P., Sankar, M., Dimitratos, N., Lopez-Sanchez, J.A., Carley, A.F., Knight, D.W., Taylor, S.H., Kiely, C.J., Hutchings, G.J. (2011). Oxidation of Benzyl Alcohol Using Supported Gold–Palladium Nanoparticles. Catalysis Today, 164(1): 315-319.
  33. Shi, Y., Yang, H., Zhao, X., Cao, T., Chen, J., Zhu, W., Yu, Y., Hou, Z. (2012). Au–Pd Nanoparticles on Layered Double Hydroxide: Highly Active Catalyst for Aerobic Oxidation of Alcohols in Aqueous Phase. Catalysis Communications, 18: 142-146.
  34. Behera, G.C., Parida, K.M. (2012). Liquid Phase Catalytic Oxidation of Benzyl Alcohol to Benzaldehyde Over Vanadium Phosphate Catalyst. Applied Catalysis A: General, 413: 245-253.
  35. Villa, A., Janjic, N., Spontoni, P., Wang, D., Su, D.S., Prati, L. (2009). Au–Pd/AC as Catalysts for Alcohol Oxidation: Effect of Reaction Parameters on Catalytic Activity and Selectivity. Applied Catalysis A: General, 364(1): 221-228.
  36. Matsumoto, T., Ueno, M., Wang, N., Kobayashi, S. (2008). Recent Advances in Immobilized Metal Catalysts for Environmentally Benign Oxidation of Alcohols. Chemistry–An Asian Journal, 3(2): 196-214.
  37. Shi, F., Tse, M.K., Beller, M. (2007). A Novel Environmentally Benign Method for the Selective Oxidation of Alcohols to Aldehydes and Ketones. Chemistry–An Asian Journal, 2(3): 411-415.
  38. Mallat, T., Baiker, A. (2004). Oxidation of Alcohols with Molecular Oxygen on Solid Catalysts. Chemical Reviews, 104(6): 3037-3058.
  39. Hutchings, G.J. (2014). Selective Oxidation Using Supported Gold Bimetallic and Trimetallic Nanoparticles. Catalysis Today, 238:, 69-73.
  40. Meenakshisundaram, S., Nowicka, E., Miedziak, P.J., Brett, G.L., Jenkins, R.L., Dimitratos, N., Taylor, S.H., Knight, D.W., Bethell, D., Hutchings, G.J. (2010). Oxidation of Alcohols Using Supported Gold and Gold–Palladium Nanoparticles. Faraday Discussions, 145: 341-356.
  41. Jayamani, M., Pillai, C.N. (1983). Hydride Transfer Reactions: VIII. Reactions of Benzyl Alcohol Over Alumina: Dehydration and Disproportionation. Journal of Catalysis, 82(2): 485-488.
  42. Valarivan, R., Pillai, C.N., Swamy, C.S. (1996). Reaction of Benzyl Alcohol Over the Hydrogen Storage Intermetallic Compound Mg2Cu. Reaction Kinetics and Catalysis Letters, 59(2): 343-350.
  43. Kovtun, G., Kameneva, T., Hladyi, S., Starchevsky, M., Pazdersky, Y., Stolarov, I., Vargaftik, M., Moiseev, I. (2002). Oxidation, Redox Disproportionation and Chain Termination Reactions Catalysed by the Pd‐561 Giant Cluster. Advanced Synthesis and Catalysis, 344(9): 957-964.

No citation recorded.