skip to main content

Selective Hydrogenation of Stearic Acid to 1-Octadecanol Using Bimetallic Palladium-Tin Supported on Carbon Catalysts at Mild Reaction Conditions

1Department of Chemistry, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat University, Jl. A. Yani Km 36.0 Banjarbaru South Kalimantan, Indonesia

2Catalysis for Sustainable Energy and Environment (CATSuRe), Lambung Mangkurat University, Indonesia

3Department of Physics, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat University, Jl. A. Yani Km 36 Banjarbaru, Indonesia

4 Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat University, Jl. A. Yani Km 36 Banjarbaru, Indonesia

View all affiliations
Received: 29 Jul 2021; Revised: 19 Sep 2021; Accepted: 19 Sep 2021; Available online: 20 Sep 2021; Published: 20 Dec 2021.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2021 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image

Bimetallic palladium-tin catalysts supported on microporous carbon (denoted as Pd-Sn(x)/C, loading amount of Pd = 5 wt% and x = Pd/Sn molar ratio; c.a. 3.0; 1.5; and 1.0) showed high selectivity in the hydrogenation of stearic acid towards 1-octadecanol (stearyl alcohol) under mild reaction conditions. Pd-Sn(x)/C catalysts were synthesized via the hydrothermal method at temperature of 150 °C for 24 h, and reduced with H2 at 400 °C for 3 h. Pd-Sn(1.5)/C catalyst exhibited the highest yield of stearyl alcohol (1-octadecanol) (up to 73.2%) at 100% conversion of stearic acid at temperature 240 °C, initial H2 pressure of 3.0 MPa, a reaction time of 13 h, and in 2-propanol/water solvent. The high selectivity of alcohols over Pd-Sn(1.5)/C catalyst can be attributed to the formation of bimetallic Pd-Sn alloy phases (e.g. Pd3Sn and Pd3Sn2) as obviously depicted by XRD analysis. The presence of co-promotor Sn and the formation of bimetallic may play a pivotal role in the high selectivity of 1-octadecanol. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (


Fulltext View|Download
Keywords: hydrogenation; stearic acid; 1-octadecanol; bimetallic Pd-Sn catalyst
Funding: BPDP Kelapa Sawit (PRJ - 49 /DPKS/2016); Ministry of Education, Culture, Research & Technology (DIPA-042.06-1.401516/2020)

Article Metrics:

  1. Noweck, K., Grafahrend, W. (2012). Fatty alcohols. in: Ullmann's Encyclopedia of Industrial Chemistry, pp. 117–139. DOI: 10.1002/14356007.a10_277.pub2
  2. Lestari, S., Mäki-Arvela, P., Beltramini, J., Lu, G.Q.M., Murzin, D.Y. (2009). Transforming triglycerides and fatty acids into biofuels, ChemSusChem, 2, 1109–1119. DOI: 10.1002/cssc.200900107
  3. Pritchard, J., Filonenko, G.A., Van Putten, R., Hensen, E.J.M., Pidko, E.A. (2015). Heterogeneous and homogeneous catalysis for the hydrogenation of carboxylic acid derivatives: History, advances and future directions. Chemical Society Reviews, 44, 3808–3833. DOI: 10.1039/c5cs00038f
  4. Tamura, M., Nakagawa, Y., Tomishige, K. (2020). Recent Developments of Heterogeneous Catalysts for Hydrogenation of Carboxylic Acids to their Corresponding Alcohols. Asian Journal of Organic Chemistry, 9, 126–143. DOI: 10.1002/ajoc.201900667
  5. Sánchez, M.A., Torres, G.C., Mazzieri, V.A., Pieck, C.L. (2017). Selective hydrogenation of fatty acids and methyl esters of fatty acids to obtain fatty alcohols–a review. Journal of Chemical Technology and Biotechnology, 92, 27–42. DOI: 10.1002/jctb.5039
  6. Turek, T., Trimm, D.L., Cant, N.W. (2007). The Catalytic Hydrogenolysis of Esters to Alcohols. Catalysis Reviews, 36, 645–683. DOI: 10.1080/01614949408013931
  7. Lee, A.F., Bennett, J.A., Manayil, J.C., Wilson, K. (2014). Heterogeneous catalysis for sustainable biodiesel production via esterification and transesterification. Chemical Society Reviews, 43, 7887–7916. DOI: 10.1039/c4cs00189c
  8. Folkers, K., Adkins, H. (1932). The catalytic hydrogenation of esters to alcohols. II. Journal of the American Chemical Society, 54, 1145–1154. DOI: 10.1021/ja01342a043
  9. Rieke, R.D., Thakur, D.S., Roberts, B.D., White, G.T. (1997). Fatty methyl ester hydrogenation to fatty alcohol part I: Correlation between catalyst properties and activity/selectivity. Journal of the American Oil Chemists' Society. 74, 333–339. DOI: 10.1007/s11746-997-0088-y
  10. Rieke, R.D., Thakur, D.S., Roberts, B.D., White, G.T. (1997). Fatty methyl ester hydrogenation to fatty alcohol part II: Process issues. Journal of the American Oil Chemists' Society, 74, 341–345. DOI: 10.1007/s11746-997-0089-x
  11. Kon, K., Tayao, T., Onodera, W., Siddiki, S.M.A.H., Shimizu, K. (2017). Hydrodeoxygenation of Fatty Acids, Triglycerides, and Ketones to Liquid Alkanes by a Pt–MoOx/TiO2 Catalyst. ChemCatChem, 9, 2822–2827. DOI: 10.1002/cctc.201700219
  12. Schreiber, M.W., Rodriguez-Niño, D., Gutiérrez, O.Y., Lercher, J.A. (2016). Hydrodeoxygenation of fatty acid esters catalyzed by Ni on nano-sized MFI type zeolites. Catalysis Science & Technology, 6, 7976–7984. DOI: 10.1039/c6cy01598k
  13. Dawes, G.J.S., Scott, E.L., Le Nôtre, J., Sanders, J.P.M., Bitter, J.H. (2015). Deoxygenation of biobased molecules by decarboxylation and decarbonylation - A review on the role of heterogeneous, homogeneous and bio-catalysis. Green Chemistry, 17, 3231–3250. DOI: 10.1039/c5gc00023h
  14. Veldsink, J.W., Bouma, M.J., Schöön, N.H., Beenackers, A.A.C.M. (1997). Heterogeneous Hydrogenation of Vegetable Oils: A Literature Review. Catalysis Reviews, 39, 253–318. DOI: 10.1080/01614949709353778
  15. Sachtler, W.M.H., van Santen, R.A. (1977). Surface Composition and Selectivity of Alloy Catalysts. Advances in Catalysis, 26, 69–119. DOI: 10.1016/S0360-0564(08)60070-X
  16. Ferrando, R., Jellinek, J., Johnston, R.L. (2008). ChemInform Abstract: Nanoalloys: From Theory to Applications of Alloy Clusters and Nanoparticles. ChemInform, 39. DOI: 10.1002/chin.200824213
  17. Tomishige, K., Nakagawa, Y., Tamura, M. (2017). Selective hydrogenolysis and hydrogenation using metal catalysts directly modified with metal oxide species. Green Chemistry, 19, 2876–2924. DOI: 10.1039/c7gc00620a
  18. Dandekar, A., Vannice, M.A. (1999). Crotonaldehyde hydrogenation on Pt/TiO2 and Ni/TiO2 SMSI catalysts. Journal of Catalysis, 183, 344–354. DOI: 10.1006/jcat.1999.2419
  19. Corma, A., Serna, P., Concepción, P., Calvino, J.J. (2008). Transforming nonselective into chemoselective metal catalysts for the hydrogenation of substituted nitroaromatics. Journal of the American Chemical Society, 130, 8748–8753. DOI: 10.1021/ja800959g
  20. Carnahan, J.E., Ford, T.A., Gresham, W.F., Grigsby, W.E., Hager, G.F. (1955). Ruthenium-catalyzed Hydrogenation of Acids to Alcohols. Journal of the American Chemical Society, 77, 3766–3768. DOI: 10.1021/ja01619a025
  21. Vorotnikov, V., Eaton, T.R., Settle, A.E., Orton, K., Wegener, E.C., Yang, C., Miller, J.T., Beckham, G.T., Vardon, D.R. (2019). Inverse Bimetallic RuSn Catalyst for Selective Carboxylic Acid Reduction. ACS Catalysis, 9, 11350–11359. DOI: 10.1021/acscatal.9b02726
  22. Wang, L., Weng, Y., Duan, P., Liu, X., Wang, X., Zhang, Y., Wang, C., Liu, Q., Ma, L. (2019). Influence of acid pretreatment on the hydrodeoxygenation performance of carbon supported RuMo bimetallic catalysts on sorbitol conversion. SN Applied Sciences, 1, 44. DOI: 10.1007/s42452-019-0434-3
  23. Miyake, T., Makino, T., Taniguchi, S., Watanuki, H., Niki, T., Shimizu, S., Kojima, Y., Sano, M. (2009). Alcohol synthesis by hydrogenation of fatty acid methyl esters on supported Ru-Sn and Rh-Sn catalysts. Applied Catalysis A: General, 364, 108–112. DOI: 10.1016/j.apcata.2009.05.036
  24. Luo, Z., Bing, Q., Kong, J., Liu, J.Y., Zhao, C. (2018). Mechanism of supported Ru3Sn7 nanocluster-catalyzed selective hydrogenation of coconut oil to fatty alcohols. Catalysis Science & Technology, 8, 1322–1332. DOI: 10.1039/c8cy00037a
  25. Deshpande, V.M., Ramnarayan, K., Narasimhan, C.S. (1990). Studies on Ruthenium-Tin Boride Catalysts II. Hydrogenation of Fatty Acid Esters to Fatty Alcohols Analysis of Products. Journal of Catalysis, 182, 174–182. DOI: 10.1016/0021-9517(90)90227-B
  26. Deshpande, V.M., Patterson, W.R., Narasimhan, C.S. (1990). Studies on ruthenium-tin boride catalysts I. Characterization. Journal of Catalysis, 121, 165–173. DOI: 10.1016/0021-9517(90)90226-A
  27. Manyar, H.G., Paun, C., Pilus, R., Rooney, D.W., Thompson, J.M., Hardacre, C. (2010). Highly selective and efficient hydrogenation of carboxylic acids to alcohols using titania supported Pt catalysts. Chemical Communications, 46, 6279–6281. DOI: 10.1039/c0cc01365j
  28. Takeda, Y., Nakagawa, Y., Tomishige, K. (2012). Selective hydrogenation of higher saturated carboxylic acids to alcohols using a ReOx-Pd/SiO2 catalyst. Catalysis Science & Technology, 2, 2221–2223. DOI: 10.1039/c2cy20302b
  29. Takeda, Y., Tamura, M., Nakagawa, Y., Okumura, K., Tomishige, K. (2015). Characterization of Re-Pd/SiO2 Catalysts for Hydrogenation of Stearic Acid. ACS Catalysis, 5, 7034–7047. DOI: 10.1021/acscatal.5b01054
  30. Rozmysłowicz, B., Kirilin, A., Aho, A., Manyar, H., Hardacre, C., Wärnå, J., Salmi, T., Murzin, D.Y. (2015). Selective hydrogenation of fatty acids to alcohols over highly dispersed ReO/TiO2 catalyst. Journal of Catalysis, 328, 197–207. DOI: 10.1016/j.jcat.2015.01.003
  31. Lu, J., Fu, B., Kung, M.C., Xiao, G., Elam, J.W., Kung, H.H., Stair, P.C. (2012). Coking- and sintering-resistant palladium catalysts achieved through atomic layer deposition. Science, 335, 1205–1208. DOI: 10.1126/science.1212906
  32. Liao, F., Lo, T.W.B., Tsang, S.C.E. (2015). Recent Developments in Palladium-Based Bimetallic Catalysts. ChemCatChem, 7, 1998–2014. DOI: 10.1002/cctc.201500245
  33. Simakova, I., Simakova, O., Mäki-Arvela, P., Simakov, A., Estrada, M., Murzin, D.Y. (2009). Deoxygenation of palmitic and stearic acid over supported Pd catalysts: Effect of metal dispersion. Applied Catalysis A: General, 355, 100–108. DOI: 10.1016/j.apcata.2008.12.001
  34. Mäki-Arvela, P., Snåre, M., Eränen, K., Myllyoja, J., Murzin, D.Y. (2008). Continuous decarboxylation of lauric acid over Pd/C catalyst. Fuel, 87, 3543–3549. DOI: 10.1016/j.fuel.2008.07.004
  35. Zhang, Z., Okejiri, F., Li, Y., Li, J., Fu, J. (2020). Hydrodecarboxylation of fatty acids into liquid hydrocarbons over a commercial Ru/C catalyst under mild conditions. New Journal of Chemistry, 44, 7642–7646. DOI: 10.1039/d0nj00730g
  36. Popov, S., Kumar, S. (2015). Rapid hydrothermal deoxygenation of oleic acid over activated carbon in a continuous flow process. Energy & Fuels, 29, 3377–3384. DOI: 10.1021/acs.energyfuels.5b00308
  37. Immer, J.G., Kelly, M.J., Lamb, H.H. (2010). Catalytic reaction pathways in liquid-phase deoxygenation of C18 free fatty acids. Applied Catalysis A: General, 375, 134–139. DOI: 10.1016/j.apcata.2009.12.028
  38. Ullrich, J., Breit, B. (2018). Selective Hydrogenation of Carboxylic Acids to Alcohols or Alkanes Employing a Heterogeneous Catalyst. ACS Catalysis, 8, 785–789. DOI: 10.1021/acscatal.7b03484
  39. Damayanti, A.P., Dewi, H.P., Ibrahim, I., Rodiansono, R. (2020). Selective hydrogenation of levulinic acid to γ-valerolactone using bimetallic Pd-Fe catalyst supported on titanium oxide. IOP Conference Series: Materials Science and Engineering, 980, 012013. DOI: 10.1088/1757-899X/980/1/012013
  40. Rodiansono, R., Pratama, M.I., Astuti, M.D., Abdullah, A., Nugroho, A., Susi, S. (2018). Selective Hydrogenation of Dodecanoic Acid to Dodecane-1-ol Catalyzed by Supported Bimetallic Ni-Sn Alloy. Bulletin of Chemical Reaction Engineering & Catalysis, 13(2), 311–319.
  41. Mustikasari, K., Rodiansono, R., Astuti, M.D., Husain, S., Sutomo, S. (2021). The promotion effect of Cu on the Pd/C catalyst in the chemoselective hydrogenation of unsaturated carbonyl compounds. Bulletin of Chemical Reaction Engineering & Catalysis, 16(2), 267–279. DOI: 10.9767/bcrec.16.2.10398.267-279
  42. Rodiansono, R., Astuti, M.D., Hara, T., Ichikuni, N., Shimazu, S. (2019). One-pot selective conversion of C5-furan into 1,4-pentanediol over bulk Ni-Sn alloy catalysts in an ethanol/H2O solvent mixture. Green Chemistry, 21, 2307–2315. DOI: 10.1039/c8gc03938k
  43. Rodiansono, R., Khairi, S., Hara, T., Ichikuni, N., Shimazu, S. (2012). Highly efficient and selective hydrogenation of unsaturated carbonyl compounds using Ni-Sn alloy catalysts. Catalysis Science & Technology, 2, 2139–2145. DOI: 10.1039/c2cy20216f
  44. Lowell, S., Shields, J.E., Thomas, M.A., Thommes, M. (2004). Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density. Springer Netherlands, Dordrecht. DOI: 10.1007/978-1-4020-2303-3
  45. Aben, P.C. (1968). Palladium areas in supported catalysts. Determination of palladium surface areas in supported catalysts by means of hydrogen chemisorption. Journal of Catalysis, 10, 224–229. DOI: 10.1016/S0021-9517(68)80002-8
  46. Xu, Q., Kharas, K.C., Croley, B.J., Datye, A.K. (2011). The Sintering of Supported Pd Automotive Catalysts. ChemCatChem, 3, 1004–1014. DOI: 10.1002/cctc.201000392
  47. Liakakou, E.T., Heracleous, E., Triantafyllidis, K.S., Lemonidou, A.A. (2015). K-promoted NiMo catalysts supported on activated carbon for the hydrogenation reaction of CO to higher alcohols: Effect of support and active metal. Applied Catalysis B: Environmental, 165, 296–305. DOI: 10.1016/j.apcatb.2014.10.027
  48. JCPDS-ICDD. (1991). Powder diffraction files, JCPDS-International center for diffraction data (JCPDS-ICDD)
  49. Doronkin, D.E., Wang, S., Sharapa, D.I., Deschner, B.J., Sheppard, T.L., Zimina, A., Studt, F., Dittmeyer, R., Behrens, S., Grunwaldt, J.D. (2020). Dynamic structural changes of supported Pd, PdSn, and PdIn nanoparticles during continuous flow high pressure direct H2O2 synthesis. Catalysis Science & Technology, 10, 4726–4742. DOI: 10.1039/d0cy00553c
  50. Li, R., Zhao, J., Han, D., Li, X. (2017). Pd/C modified with Sn catalyst for liquid-phase selective hydrogenation of maleic anhydride to gamma-butyrolactone. Chinese Chemical Letters, 28, 1330–1335. DOI: 10.1016/j.cclet.2017.04.028
  51. Kandel, K., Chaudhary, U., Nelson, N.C., Slowing, I.I. (2015). Synergistic Interaction between Oxides of Copper and Iron for Production of Fatty Alcohols from Fatty Acids. ACS Catalysis, 5, 6719–6723. DOI: 10.1021/acscatal.5b01664
  52. Kong, X., Fang, Z., Bao, X., Wang, Z., Mao, S., Wang, Y. (2018). Efficient hydrogenation of stearic acid over carbon coated Ni–Fe catalyst. Journal of Catalysis, 367, 139–149. DOI: 10.1016/j.jcat.2018.08.022
  53. Pallassana, V., Neurock, M. (2002). Reaction paths in the hydrogenolysis of acetic acid to ethanol over Pd(111), Re(0001), and PdRe alloys. Journal of Catalysis, 209, 289–305. DOI: 10.1006/jcat.2002.3585
  54. Olcay, H., Xu, L., Xu, Y., Huber, G.W. (2010). Aqueous-phase hydrogenation of acetic acid over transition metal catalysts. ChemCatChem, 2, 1420–1424. DOI: 10.1002/cctc.201000134

Last update:

No citation recorded.

Last update:

No citation recorded.