skip to main content

The Dependency of Kinetic Parameters as a Function of Initial Solute Concentration: New Insight from Adsorption of Dye and Heavy Metals onto Humic-Like Modified Adsorbents

1Department of Chemistry, Universitas Pertahanan RI, Bogor, 16810 , Indonesia

2Department of Chemistry, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia

Received: 25 Jul 2021; Revised: 12 Aug 2021; Accepted: 12 Aug 2021; Published: 20 Dec 2021; Available online: 14 Aug 2021.
Open Access Copyright (c) 2021 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image

Kinetics parameters are the essential issue in the design of water treatment systems for pollutants uptake. Though numerous studies have identified the boundary conditions that exert influence on the kinetics parameters, the influence of the dynamic initial solute concentration (C0) to the kinetic parameters generated from fitting kinetics model to experimental data has not been investigated thoroughly. This study revealed a change in the kinetics parameter value due to changes in the adsorption mechanism as an effect of dynamic C0. It was observed that at higher C0 the adsorbed solute at equilibrium (qe) increases and it takes longer time to reach equilibrium. As a result, the kinetics rate constant (k) calculated from adsorption reaction model (Lagergren, Ho, Santosa, and RBS) was decreased. In general, Ho model exhibit higher correlation coefficient value (R2) among the other model at low C0. At high C0, Ho’s R2 tend to decrease while the Lagergren and RBS’s R2 was increased. The amendment mechanism from external mass transport to intra-particle diffusion as a rate limiting step was evidenced by Boyd and Weber-Morris kinetics model. Further, the physicochemical properties of the adsorbent used in this work: chitin and Fe3O4 modified horse dung humic acid (HDHA-Fe3O4 and HDHA-Ch, respectively) with the solute: Pb(II), Methylene Blue (MB), and Ni(II) was deeply discussed in this paper. The outcomes of this work are of prime significance for effective and optimum design for pollutant uptake by adsorption equipment. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (


Fulltext View|Download
Keywords: Adsorption; Heavy Metals and Dye; Humic-Like Modified Adsorbent; Initial Solute Concentration; Kinetics Parameter Dependency
Funding: LPDP (Indonesia Endowment Fund for Education) BPI Program

Article Metrics:

Article Info
Section: Original Research Articles
Language : EN
  1. Badri, A.F., Siregar, P.M.S.B.N., Palapa, N.R., Mohadi, R., Mardiyanto, M., Lesbani, A. (2021). Mg-Al/Biochar Composite with Stable Structure for Malachite Green Adsorption from Aqueous Solutions. Bulletin of Chemical Reaction Engineering & Catalysis, 16(1), 149–160. DOI: 10.9767/bcrec.16.1.10270.149-160
  2. Chianese, S., Fenti, A., Iovino, P., Musmarra, D., Salvestrini, S. (2020). Sorption of Organic Pollutants by Humic Acids: A Review. Molecules, 25(4), 918. DOI: 10.3390/molecules25040918
  3. Zhang, J. (2019). Physical insights into kinetic models of adsorption. Separation and Purification Technology, 229, 115832. DOI: 10.1016/j.seppur.2019.115832
  4. Qiu, H., Lv, L., Pan, B.C., Zhang, Q.J., Zhang, W.M., Zhang, Q.X. (2009). Critical review in adsorption kinetic models. Journal of Zhejiang University: Science A, 10(5), 716–724. DOI: 10.1631/jzus.A0820524
  5. Weber, W.J., Morris, J.C. (1963). Kinetics of adsorption on carbon from solution. Journal of the Sanitary Engineering Division, 89(2), 31–59. DOI: 10.1061/JSEDAI.0000430
  6. Largitte, L., Pasquier, R. (2016). A review of the kinetics adsorption models and their application to the adsorption of lead by an activated carbon. Chemical Engineering Research and Design, 109, 495–504. DOI: 10.1016/j.cherd.2016.02.006
  7. Tan, I.A.W., Ahmad, A.L., Hameed, B.H. (2009). Adsorption isotherms, kinetics, thermodynamics and desorption studies of 2,4,6-trichlorophenol on oil palm empty fruit bunch-based activated carbon. Journal of Hazardous Materials, 164, 473–482. DOI: 10.1016/j.jhazmat.2008.08.025
  8. Lagergren, S. (1898). Kungliga svenska vetenskapsakademiens. Handlingar, 24 (4), 1–39
  9. Ho, Y.S., McKay, G. (1998). Sorption of dye from aqueous solution by peat. Chemical Engineering Journal, 70(2), 115–124. DOI: 10.1016/S1385-8947(98)00076-X
  10. Ho, Y.S. (2006). Review of second-order models for adsorption systems. Journal of Hazardous Materials, 136(3), 681–689. DOI: 10.1016/j.jhazmat.2005.12.043
  11. Robalds, A., Naja, G.M., Klavins, M. (2016). Highlighting inconsistencies regarding metal biosorption. Journal of Hazardous Materials, 304, 553–556. DOI: 10.1016/j.jhazmat.2015.10.042
  12. Tran, H.N., You, S.J., Hosseini-Bandegharaei, A., Chao, H.P. (2017). Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review. Water Research, 120, 88–116. DOI: 10.1016/j.watres.2017.04.014
  13. Azizian, S., Haerifar, M., Bashiri, H. (2009). Adsorption of methyl violet onto granular activated carbon: Equilibrium, kinetics and modeling. Chemical Engineering Journal, 146(1), 36–41. DOI: 10.1016/j.cej.2008.05.024
  14. Santosa, S.J. (2014). Sorption kinetics of Cd(II) species on humic acid-based sorbent. Clean - Soil, Air, Water, 42(6), 760–766. DOI: 10.1002/clen.201200684
  15. Rusdiarso, B., Basuki, R., Santosa, S.J. (2016). Evaluation of Lagergren kinetics equation by using novel kinetics expression of sorption of Zn2+ onto horse dung humic acid (HD-HA). Indonesian Journal of Chemistry, 16(3), 338–346. DOI: 10.22146/ijc.1158
  16. Basuki, R., Ngatijo, Santosa, S.J., Rusdiarso, B. (2018). Comparison the new kinetics equation of noncompetitive sorption Cd(II) and Zn(II) onto green sorbent horse dung humic acid (HD-HA). Bulletin of Chemical Reaction Engineering & Catalysis, 13(3), 475–488. DOI: 10.9767/bcrec.13.3.1774.475-488
  17. Ngatijo, N., Basuki, R., Rusdiarso, B., Nuryono, N. (2020). Sorption-desorption profile of Au (III) onto silica modified quaternary amines (SMQA) in gold mining effluent. Journal of Environmental Chemical Engineering, 8(3), 103747. DOI: 10.1016/j.jece.2020.103747
  18. Fang, D., Zhuang, X., Huang, L., Zhang, Q., Shen, Q., Jiang, L., Xu, X., Ji, F. (2020). Developing the new kinetics model based on the adsorption process: From fitting to comparison and prediction. Science of the Total Environment, 725(174), 138490. DOI: 10.1016/j.scitotenv.2020.138490
  19. Hu, Q., Wang, Q., Feng, C., Zhang, Z., Lei, Z., Shimizu, K. (2018). Insights into mathematical characteristics of adsorption models and physical meaning of corresponding parameters. Journal of Molecular Liquids, 254, 20–25. DOI: 10.1016/j.molliq.2018.01.073
  20. Kupeta, A.J.K., Naidoo, E.B., Ofomaja, A.E. (2018). Kinetics and equilibrium study of 2-nitrophenol adsorption onto polyurethane cross-linked pine cone biomass. Journal of Cleaner Production, 179, 191–209. DOI: 10.1016/j.jclepro.2018.01.034
  21. Okoli, C.P., Ofomaja, A.E. (2018). Degree of time dependency of kinetic coefficient as a function of adsorbate concentration; new insights from adsorption of tetracycline onto monodispersed starch-stabilized magnetic nanocomposite. Journal of Environmental Management, 218, 139–147. DOI: 10.1016/j.jenvman.2018.04.060
  22. Feng, X., Wang, P., Shi, Z., Kwon, K.D., Zhao, H., Yin, H., Lin, Z., Zhu, M., Liang, X., Liu, F., and Sparks, D.L. (2018). A Quantitative Model for the Coupled Kinetics of Arsenic Adsorption/Desorption and Oxidation on Manganese Oxides. Environmental Science and Technology Letters, 5(3), 175–180. DOI: 10.1021/acs.estlett.8b00058
  23. Basuki, R., Rusdiarso, B., Santosa, S.J., Siswanta, D. (2021). Magnetite-Functionalized Horse Dung Humic Acid (HDHA) for the Uptake of Toxic Lead (II) from Artificial Wastewater. Adsorption Science & Technology, 2021(5523513), 1–15. DOI: 10.1155/2021/5523513
  24. Stevenson, F.J. (1994). Humus Chemistry: Genesis, Composition, Reactions. New York: John Wiley & Sons
  25. No, H.K., Meyers, S.P., and Lee, K.S. (1989). Isolation and characterization of chitin from crawfish shell waste. Journal of Agricultural and Food Chemistry. 37(3), 575–579. DOI: 10.1021/jf00087a001
  26. Santosa, S.J., Siswanta, D., Sudiono, S., Utarianingrum, R. (2008). Chitin-humic acid hybrid as adsorbent for Cr(III) in effluent of tannery wastewater treatment. Applied Surface Science, 254(23), 7846–7850. DOI: 10.1016/j.apsusc.2008.02.102
  27. Liu, J.F., Zhao, Z.S., Jiang, G. Bin (2008). Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water. Environmental Science and Technology, 42(18), 6949–6954. DOI: 10.1021/es800924c
  28. Santosa, S.J., Siswanta, D., Kurniawan, A., Rahmanto, W.H. (2007). Hybrid of chitin and humic acid as high performance sorbent for Ni(II). Surface Science, 601(22), 5155–5161. DOI: 10.1016/j.susc.2007.04.163
  29. Abdou, E.S., Nagy, K.S.A., Elsabee, M.Z. (2008). Extraction and characterization of chitin and chitosan from local sources. Bioresource Technology, 99(5), 1359–1367. DOI: 10.1016/j.biortech.2007.01.051
  30. Magnacca, G., Allera, A., Montoneri, E., Celi, L., Benito, D.E., Gagliardi, L.G., Gonzalez, M.C., Mártire, D.O., Carlos, L. (2014). Novel magnetite nanoparticles coated with waste-sourced biobased substances as sustainable and renewable adsorbing materials. ACS Sustainable Chemistry and Engineering, 2(6), 1518–1524. DOI: 10.1021/sc500213j
  31. Tolesa, L.D., Gupta, B.S., Lee, M.J. (2019). Chitin and chitosan production from shrimp shells using ammonium-based ionic liquids. International Journal of Biological Macromolecules, 130, 818–826. DOI: 10.1016/j.ijbiomac.2019.03.018
  32. Zarghani, M., Akhlaghinia, B. (2016). Magnetically separable Fe3O4@chitin as an eco-friendly nanocatalyst with high efficiency for green synthesis of 5-substituted-1H-tetrazoles under solvent-free conditions. RSC Advances, 6(38), 31850–31860. DOI: 10.1039/c6ra07252f
  33. Koesnarpadi, S., Santosa, S.J., Siswanta, D., Rusdiarso, B. (2017). Humic Acid Coated Fe3O4 Nanoparticle for Phenol Sorption. Indonesian Journal of Chemistry, 17(2), 274–283. DOI:
  34. Illés, E., Tombácz, E. (2006). The effect of humic acid adsorption on pH-dependent surface charging and aggregation of magnetite nanoparticles. Journal of Colloid and Interface Science, 295(1), 115–123. DOI: 10.1016/j.jcis.2005.08.003
  35. Peng, L., Qin, P., Lei, M., Zeng, Q., Song, H., Yang, J., Shao, J., Liao, B., Gu, J. (2012). Modifying Fe3O4 nanoparticles with humic acid for removal of Rhodamine B in water. Journal of Hazardous Materials, 209–210, 193–198. DOI: 10.1016/j.jhazmat.2012.01.011
  36. Jiang, W., Cai, Q., Xu, W., Yang, M., Cai, Y., Dionysiou, D.D., O’Shea, K.E. (2014). Cr(VI) adsorption and reduction by humic acid coated on magnetite. Environmental Science and Technology, 48(14), 8078–8085. DOI: 10.1021/es405804m
  37. Rusdiarso, B., Basuki, R. (2020). Stability Improvement of Humic Acid as Sorbent through Magnetite and Chitin Modification. Jurnal Kimia Sains dan Aplikasi, 23(5), 152–159. DOI: 10.14710/jksa.23.5.152-159
  38. Fu, Q., Hu, B., Zhou, X., Hu, Q., Sheng, J. (2016). Impact of key geochemical parameters on the attenuation of Pb(II) from water using a novel magnetic nanocomposite: fulvic acid-coated magnetite nanoparticles. Desalination and Water Treatment, 57(54), 26063–26072. DOI: 10.1080/19443994.2016.1157763
  39. Anirudhan, T.S., Ramachandran, M. (2015). Adsorptive removal of basic dyes from aqueous solutions by surfactant modified bentonite clay (organoclay): Kinetic and competitive adsorption isotherm. Process Safety and Environmental Protection, 95, 215–225. DOI: 10.1016/j.psep.2015.03.003
  40. Zehra, T., Lim, L.B.L., Priyantha, N. (2015). Removal behavior of peat collected from Brunei Darussalam for Pb(II) ions from aqueous solution: equilibrium isotherm, thermodynamics, kinetics and regeneration studies. Environmental Earth Sciences, 74(3), 2541–2551. DOI: 10.1007/s12665-015-4273-2
  41. Liu, Y., Li, T., Zeng, G., Zheng, B., Xu, W., Liu, S. (2016). Removal of Pb(Π) from aqueous solution by magnetic humic acid/chitosan composites. Journal of Central South University, 23(11), 2809–2817. DOI: 10.1007/s11771-016-3344-1
  42. Chen, R.P., Zhang, Y.L., Wang, X.Y., Zhu, C.Y., Ma, A.J., Jiang, W.M. (2015). Removal of methylene blue from aqueous solution using humic-acid coated magnetic nanoparticles. Desalination and Water Treatment, 55(2), 539–548. DOI: 10.1080/19443994.2014.916233
  43. Santosa, S.J., Kunarti, E.S., Aprilita, N.H., Wulandari, B., Bawani, D.N. (2019). Sorption mechanism and performance of peat soil humin for Methylene blue and p-Nitrophenol. Indonesian Journal of Chemistry, 19(1), 198–210. DOI: 10.22146/ijc.33635
  44. Liu, S. (2015). Cooperative adsorption on solid surfaces. Journal of Colloid and Interface Science, 450, 224–238. DOI: 10.1016/j.jcis.2015.03.013
  45. Chakravorti, R.K. and Weber, T.W. (1974). Pore and Solid Diffusion Models for fixed-bed adsorbers. AIChE Journal, 20(2), 228-238. DOI: 10.1002/aic.690200204
  46. Freundlich, H. (1906). Über die Adsorption in Lösungen. Zeitschrift für Physikalische Chemie, 57U(1), 385–470. DOI: 10.1515/zpch-1907-5723
  47. Tempkin, M.I., Pyzhev, V. (1940). Kinetics of ammonia synthesis on promoted iron catalyst. Acta Phys. Chim. USSR, 12(1), 327–356
  48. Uddin, M.K., Nasar, A. (2020). Walnut shell powder as a low-cost adsorbent for methylene blue dye: isotherm, kinetics, thermodynamic, desorption and response surface methodology examinations. Scientific Reports, 10(1), 1–13. DOI: 10.1038/s41598-020-64745-3
  49. Shen, S., Pan, T., Liu, X., Yuan, L., Zhang, Y., Wang, J., Guo, Z. (2010). Adsorption of Pd(II) complexes from chloride solutions obtained by leaching chlorinated spent automotive catalysts on ion exchange resin Diaion WA21J. Journal of Colloid and Interface Science, 345(1), 12–18. DOI: 10.1016/j.jcis.2010.01.049
  50. Araújo, C.S.T., Almeida, I.L.S., Rezende, H.C., Marcionilio, S.M.L.O., Léon, J.J.L., de Matos, T.N. (2018). Elucidation of mechanism involved in adsorption of Pb(II) onto lobeira fruit (Solanum lycocarpum) using Langmuir, Freundlich and Temkin isotherms. Microchemical Journal, 137, 348–354. DOI: 10.1016/j.microc.2017.11.009
  51. Duran, C., Ozdes, D., Gundogdu, A., Senturk, H.B. (2011). Kinetics and isotherm analysis of basic dyes adsorption onto almond shell (Prunus dulcis) as a low cost adsorbent. Journal of Chemical and Engineering Data, 56(5), 2136–2147. DOI: 10.1021/je101204j
  52. Alghamdi, A.A., Al-Odayni, A.B., Abduh, N.A.Y., Alramadhan, S.A., Aljboar, M.T., Saeed, W.S. (2021). Adsorptive Performance of Polypyrrole-Based KOH-Activated Carbon for the Cationic Dye Crystal Violet: Kinetic and Equilibrium Studies. Adsorption Science and Technology, 2021 (5527594), 1-11. DOI: 10.1155/2021/5527594
  53. Tan, I.A.W., Ahmad, A.L., Hameed, B.H. (2008). Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: Equilibrium, kinetic and thermodynamic studies. Journal of Hazardous Materials, 154(1–3), 337–346. DOI: 10.1016/j.jhazmat.2007.10.031
  54. Duval, J.F.L., Van Leeuwen, H.P. (2012). Rates of ionic reactions with charged nanoparticles in aqueous media. Journal of Physical Chemistry A, 116(25), 6443–6451. DOI: 10.1021/jp209488v
  55. Town, R.M., Van Leeuwen, H.P., Buffle, J. (2012). Chemodynamics of soft nanoparticulate complexes: Cu(II) and Ni(II) complexes with fulvic acids and aquatic humic acids. Environmental Science and Technology, 46(19), 10487–10498. DOI: 10.1021/es3018013
  56. Sabarinathan, C., Karuppasamy, P., Vijayakumar, C.T., Arumuganathan, T. (2019). Development of methylene blue removal methodology by adsorption using molecular polyoxometalate: Kinetics, Thermodynamics and Mechanistic Study. Microchemical Journal, 146, 315–326. DOI: 10.1016/j.microc.2019.01.015
  57. Almeida, C.A.P., Debacher, N.A., Downs, A.J., Cottet, L., Mello, C.A.D. (2009). Removal of methylene blue from colored effluents by adsorption on montmorillonite clay. Journal of Colloid and Interface Science, 332(1), 46–53. DOI: 10.1016/j.jcis.2008.12.012
  58. Agarwal, S., Rani, A. (2017). Adsorption of resorcinol from aqueous solution onto CTAB/NaOH/flyash composites: Equilibrium, kinetics and thermodynamics. Journal of Environmental Chemical Engineering, 5(1), 526–538. DOI: 10.1016/j.jece.2016.11.035
  59. Sari, A.A., Amriani, F., Muryanto, M., Triwulandari, E., Sudiyani, Y., Barlianti, V., Narrij Lotulung, P.D., Hadibarata, T. (2017). Mechanism, adsorption kinetics and applications of carbonaceous adsorbents derived from black liquor sludge. Journal of the Taiwan Institute of Chemical Engineers, 77, 236–243. DOI: 10.1016/j.jtice.2017.05.008
  60. Gunasundari, E., Kumar, P.S. (2017). Adsorption isotherm, kinetics and thermodynamic analysis of Cu(II) ions onto the dried algal biomass (Spirulina platensis). Journal of Industrial and Engineering Chemistry, 56, 129–144. DOI: 10.1016/j.jiec.2017.07.005
  61. Stähelin, P.M., Valério, A., Guelli Ulson de Souza, S.M. de A., da Silva, A., Borges Valle, J.A., Ulson de Souza, A.A. (2018). Benzene and toluene removal from synthetic automotive gasoline by mono and bicomponent adsorption process. Fuel, 231, 45–52. DOI: 10.1016/j.fuel.2018.04.169
  62. Darwish, A.A.A., Rashad, M., AL-Aoh, H.A. (2019). Methyl orange adsorption comparison on nanoparticles: Isotherm, kinetics, and thermodynamic studies. Dyes and Pigments, 160, 563–571. DOI: 10.1016/j.dyepig.2018.08.045
  63. Marczewski, A.W. (2010). Application of mixed order rate equations to adsorption of methylene blue on mesoporous carbons. Applied Surface Science, 256(17), 5145–5152. DOI: 10.1016/j.apsusc.2009.12.078
  64. Guo, X., Wang, J. (2019). A general kinetic model for adsorption: Theoretical analysis and modeling. Journal of Molecular Liquids, 288, 111100. DOI: 10.1016/j.molliq.2019.111100
  65. Wang, J., Guo, X. (2020). Adsorption kinetic models: Physical meanings, applications, and solving methods. Journal of Hazardous Materials, 390, 122156. DOI: 10.1016/j.jhazmat.2020.122156
  66. Ho, Y.S., McKay, G. (1998). The kinetics of sorption of basic dyes from aqueous solution by sphagnum moss peat. The Canadian Journal of Chemical Engineering, 76(4), 822–827. DOI: 10.1002/cjce.5450760419
  67. Azizian, S. (2004). Kinetic models of sorption: A theoretical analysis. Journal of Colloid and Interface Science, 276(1), 47–52. DOI: 10.1016/j.jcis.2004.03.048
  68. Kalavathy, M.H., Karthikeyan, T., Rajgopal, S., Miranda, L.R. (2005). Kinetic and isotherm studies of Cu(II) adsorption onto H3PO 4-activated rubber wood sawdust. Journal of Colloid and Interface Science, 292(2), 354–362. DOI: 10.1016/j.jcis.2005.05.087
  69. Li, Y., Yue, Q., Gao, B. (2010). Adsorption kinetics and desorption of Cu ( II ) and Zn ( II ) from aqueous solution onto humic acid. Journal of Hazardous Materials, 178(1–3), 455–461. DOI: 10.1016/j.jhazmat.2010.01.103
  70. Lu, S., Liu, W., Wang, Y., Zhang, Y., Li, P., Jiang, D., Fang, C., Li, Y. (2019). An adsorbent based on humic acid and carboxymethyl cellulose for efficient dye removal from aqueous solution. International Journal of Biological Macromolecules, 135, 790–797. DOI: 10.1016/j.ijbiomac.2019.05.095
  71. Zhang, X., Zhang, P., Wu, Z., Zhang, L., Zeng, G., Zhou, C. (2013). Adsorption of methylene blue onto humic acid-coated Fe3O4 nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 435, 85–90. DOI: 10.1016/j.colsurfa.2012.12.056
  72. Luo, W.J., Gao, Q., Wu, X.L., Zhou, C.G. (2014). Removal of Cationic Dye (Methylene Blue) from Aqueous Solution by Humic Acid-Modified Expanded Perlite: Experiment and Theory. Separation Science and Technology (Philadelphia), 49(15), 2400–2411. DOI: 10.1080/01496395.2014.920395
  73. Isloor, A.M., Shenvi, S.S., Ismail, A.F., Shilton, S.J. (2015). Humic Acid Based Biopolymeric Membrane for Effective Removal of Methylene Blue and Rhodamine B. Industrial & Engineering Chemistry Research, 54(18), 4965–4975. DOI: 10.1021/acs.iecr.5b00761
  74. Inam, E., Udo, O.O., Edet, J.B., Etim, U.J., Offiong, N.O. (2018). Adsorption of Methylene Blue from Aqueous Solution by Humic Acid Extracted from Freshwater River Humus. J. Mater. Environ. Sci., 9(4), 1324–1334. [Online]. Available:
  75. Bartczak, P., Norman, M., Klapiszewski, L., Karwańska, N., Kawalec, M., Baczyńska, M., Wysokowski, M., Zdarta, B., Ciesielczyk, F., Jesionowski, T. (2018). Removal of nickel(II) and lead(II) ions from aqueous solution using peat as a low-cost adsorbent: A kinetic and equilibrium study. Arabian Journal of Chemistry, 11(8), 1209–1222. DOI: 10.1016/j.arabjc.2015.07.018
  76. Chen, R., Zhang, Y., Shen, L., Wang, X., Chen, J., Ma, A., Jiang, W. (2015). Lead(II) and methylene blue removal using a fully biodegradable hydrogel based on starch immobilized humic acid. Chemical Engineering Journal, 268, 348–355. DOI: 10.1016/j.cej.2015.01.081
  77. Kushwaha, A., Rani, R., Patra, J.K. (2020). Adsorption kinetics and molecular interactions of lead [Pb(II)] with natural clay and humic acid. International Journal of Environmental Science and Technology, 17(3), 1325–1336. DOI: 10.1007/s13762-019-02411-6
  78. Basu, H., Saha, S., Mahadevan, I.A., Pimple, M.V., Singhal, R.K. (2019). Humic acid coated cellulose derived from rice husk: A novel biosorbent for the removal of Ni and Cr. Journal of Water Process Engineering, 32, 100892. DOI: 10.1016/j.jwpe.2019.100892

Last update:

No citation recorded.

Last update:

No citation recorded.